全国免费咨询热线4000-188-588

TEL:029-88643194 FAX:029-88611928

孔板流量计测量天然气的原理

本文章主要介绍了:孔板流量计测量天然气的原理,孔板流量计直径是什么,孔板流量计取压点,孔板流量计测量天然气的原理等信息

孔板流量计它是测量流量的差压发生装置,配合各种差压计或是差压变送器可以测量管道中各种流体的流量。孔板流量计节流装置包括有环室孔板,喷嘴等。孔板流量计节流装置是与差压变送器配套使用,可以测量蒸汽、液体、气体的流量,孔板流量计广泛的应用于化工、电力、石油、冶金、轻工等部门。
智能节流装置(孔板流量计)是集温度、压力、流量检测功能于一体的,并且能进行温度、压力自动补偿的流量计,孔板流量计是采用先进的微机技术及微功耗新技术,结构紧凑,功能强,操作简单,使用方便。
孔板流量计其优点:
1、结构容易于复制,牢固、简单、性能稳定可靠、价格低;
(孔板流量计测量天然气的原理)

孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及引的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。节流装置又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成广泛应用于气体.蒸汽和液体的流量测量.具有结构简单,维修方便,性能稳定。可靠性高,易实现自动控制。
面积式流量计原理是保持压降不变,利用节流面积的变化来测量流量的大小。面积式流量计原理是保持压降不变,利用节流面积的变化来测量流量的大小。它由一个由上往下逐步扩大的锥形管和一个放在锥形管内的转子或浮子组成。当流体流经锥形管时,管内的浮子被推高到与流量相对应的高度处浮漂着。当流量变大时,作用在转子上的冲力加大,由于转子在流体中的重量是恒定的,转子就上升,相应的转子与锥形管间的环隙亦增加,流体流经环隙的流速降低,冲力也降低,使转子在新的位置上达到平衡。根据转子浮漂的位置,可测得瞬时流量值。面积式流量计的优点是结构简单、测试简便,适用于测量小流量。其缺点是容易受到流体密度、压力和粘度等因素的影响。烟道气流量测试时,由于烟气中含有粉尘,不能使用面积式流量计。
(孔板流量计测量天然气的原理)

4.防止渣滓在导管内沉积;
5.测量液体压力时,取压口应开在流程管道侧面,以避免沉淀积渣。
6.导压管应安装在温度波动小的地方;
7.测量气体压力时,取压口应开在流程管道顶端,并且变送器也应安装在流程管道上部,以便积累的液体容易注入流程管道中。
8.防止孔板流量计与腐蚀性或过热的介质接触;
9.测量蒸汽或其它高温介质时,需接加缓冲管(盘管)等冷凝器,不应使变送器的工作温度超过极限。
孔板流量计只有正确安装和防护可以保证孔板流量计的应用效果。
(孔板流量计测量天然气的原理)

为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划孔板流量计的流量校正实验报告流量计流量的校正实验一.实验目的1.熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。2.掌握流量计的标定方法之一容量法。3.测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。二.基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺、给出孔流系数、给出校正曲线。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压转载于写论文网孔板流量计的流量校正实验报告头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。1、孔板流量计的校核孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。若管路直径为d1,孔板锐孔直径为d0,流体流经孔板前后所形成的缩脉直径为d2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有图1孔板流量计2u2u12p1p2p2或由于缩脉处位置随流速而变化,截面积A2又难以指导,而孔板孔径的面积A0是已知的,因此,用孔板孔径处流速u0来替代上式中的u2,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C加以校正。对于不可压缩流体,根据连续性方程可知u1A0u0,代入上式并整理可得A1u0令C0则u0C根据u0和A0即可计算出流体的体积流量Vu0A0C0A02p/或Vu0A0C0A02gRi/式中V-流体的体积流量,m3/s;R-U形压差计的读数,m;i-压差计中指示液密度,kg/m3;C0-孔流系数,无因次;C0由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定,具体数值由实验测定。当孔径与管径之比为一定值时,Re超过某个数值后,C0接近于常数。一般工业上定型的流量计,就是规定在C0为定值的流动条件下使用。C0值范围一般为~。孔板流量计安装时应在其上、下游各有一段直管段作为稳定段,上游长度至少应为10d1,下游为5d2。孔板流量计构造简单,制造和安装都很方便,其主要缺点是机械能损失大。由于机械能损失,使下游速度复原后,压力不能恢复到孔板前的值,称之为永久损失。d0/d1的值越小,永久损失越大。2.文丘里流量计的校核孔板流量计的主要缺点时机械能损失很大,为了克服这一缺点,可采用一渐缩渐括管,如图2所示,当流体流过这样的锥管时,不会出现边界层分离及漩涡,从而大大降低了机械能损失。这种管称为文丘里管。文丘里管收缩锥角通常取15°~25°,扩大段锥角要取得小些,一般为5°-7°,使流速改变平缓,因为机械能损失主要发生在突然扩大处。图2文丘里流量计文丘里流量计测量原理与孔板完全相同,只不过永久损失要小很多。流速、流量计算仍可用计算孔板流量计式子进行计算,式中u0仍代表最小截面处的流速。文丘里管的孔流系数C0约为。机械能损失约为2wf文丘里流量计的缺点是加工比孔板复杂,因而造价高,且安装时需占去一定管长位置,但其永久损失小,故尤其适用于低压气体的输送。三.实验装置与流程实验装置如图3所示。主要部分由循环水泵、流量计、U型压差计、温度计和水槽等组成,实验主管路为1寸不锈钢管。图3流量计校合实验示意图四.实验步骤1.熟悉实验装置,了解各阀门的位置及作用。启动离心泵。2.对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。3.对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8~9个点,大流量时测量5~6个点。4.测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。5.主要计算过程如下根据体积法算得流量V;根据u4V,孔板取喉径d0=,文丘里取喉径d=;2d读取流量V对应下的压差计高度差R,根据u0C和pgR,求得C0值。根据Redu,求得雷诺数,其中d取对应的d0值。在坐标纸上分别绘出孔板流量计和文丘里流量计的C0-Re图。五.实验数据记录及处理1.数据记录计量桶底面积为㎡1.将所有原始数据及计算结果列成表格,并附上计算示例。2.在单对数坐标纸上分别绘出孔板流量计和文丘里流量计的C0-Re图。3.讨论实验结果。六.思考题1.孔流系数与哪些因素有关2.孔板、文丘里流量计安装时各应注意什么问题3.如何检查系统排气是否完全流量计校核一、实验操作1.熟悉实验装置,了解各阀门的位置及作用。2.对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。3.对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8-9个点,大流量时测量5-6个点。为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。4.测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。二、数据处理1.数据记录计量水箱规格长400mm;宽300mm管径d25孔板取喉径d0查出实验温度下水的物性密度ρkg/m3粘度μPaS2.数据处理Redud4V4Vddu0Vu0A0C0A0则C0孔板流量计试验数据处理文丘里流量计实验数据处理3.结果分析C0由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。根据上图得当Re数增大到一定值后,C0不再随着Re而变,成为一个和孔径与管径之比有关的常数。流量计流量的校正实验一.实验目的1.熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。2.掌握流量计的标定方法之一容量法。3.测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。二.基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺、给出孔流系数、给出校正曲线。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。1、孔板流量计的校核孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。若管路直径为d1,孔板锐孔直径为d0,流体流经孔板前后所形成的缩脉直径为d2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有图1孔板流量计u2u1222p1p2p或由于缩脉处位置随流速而变化,截面积A2又难以指导,而孔板孔径的面积A0是已知的,因此,用孔板孔径处流速u0来替代上式中的u2,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C加以校正。A0A1u0,代入上式并整理可得对于不可压缩流体,根据连续性方程可知u1u0令C0C则u0C根据u0和A0即可计算出流体的体积流量Vu0A0C0A02p/或Vu0A0C0A02gRi/式中V-流体的体积流量,m3/s;R-U形压差计的读数,m;i-压差计中指示液密度,kg/m3;C0-孔流系数,无因次;C0由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定,具体数值由实验测定。当孔径与管径之比为一定值时,Re超过某个数值后,C0接近于常数。一般工业上定型的流量计,就是规定在C0为定值的流动条件下使用。C0值范围一般为~。孔板流量计安装时应在其上、下游各有一段直管段作为稳定段,上游长度至少应为10d1,下游为5d2。孔板流量计构造简单,制造和安装都很方便,其主要缺点是机械能损失大。由于机械能损失,使下游速度复原后,压力不能恢复到孔板前的值,称之为永久损失。d0/d1的值越小,永久损失越大。2.文丘里流量计的校核孔板流量计的主要缺点时机械能损失很大,为了克服这一缺点,可采用一渐缩渐括管,如图2所示,当流体流过这样的锥管时,不会出现边界层分离及漩涡,从而大大降低了机械能损失。这种管称为文丘里管。文丘里管收缩锥角通常取15°~25°,扩大段锥角要取得小些,一般为5°-7°,使流速改变平缓,因为机械能损失主要发生在突然扩大处。图2文丘里流量计文丘里流量计测量原理与孔板完全相同,只不过永久损失要小很多。流速、流量计算仍可用计算孔板流量计式子进行计算,式中u0仍代表最小截面处的流速。文丘里管的孔流系数C0约为。机械能损失约为wf2文丘里流量计的缺点是加工比孔板复杂,因而造价高,且安装时需占去一定管长位置,但其永久损失小,故尤其适用于低压气体的输送。三.实验装置与流程实验装置如图3所示。主要部分由循环水泵、流量计、U型压差计、温度计和水槽等组成,实验主管路为1寸不锈钢管。图3流量计校合实验示意图四.实验步骤1.熟悉实验装置,了解各阀门的位置及作用。启动离心泵。2.对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。3.对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8~9个点,大流量时测量5~6个点。4.测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。5.主要计算过程如下根据体积法算得流量V;根据u4Vd2,孔板取喉径d0=,文丘里取喉径d=;读取流量V对应下的压差计高度差R,根据u0C和pgR,求得C0值。根据Redu,求得雷诺数,其中d取对应的d0
(孔板流量计测量天然气的原理)

二、孔板流量计特点:
▲孔板流量计节流装置结构易于复制,简单、牢固,性能稳定可靠,使用期限长,价格低廉。
▲孔板流量计安装更简单,无须引压管,可直接接差压变送器和压力变送器。
▲孔板流量计应用范围广,全部单相流皆可测量,部分混相流亦可应用。
▲孔板流量计计算采用国际标准与加工
▲孔板流量计标准型节流装置无须实流校准,即可投用。
▲孔板流量计一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。http://www.jsjkyz.com/product/llyb/kongbanliuliangji.html
▲孔板流量计采用进口单晶硅智能差压传感器
(孔板流量计测量天然气的原理)

7、夹紧孔板用的密封垫片(包括环室与法兰、环室与孔板间),在夹紧后,不得突入管道内壁。孔板安装处必须严密,不允许有泄漏现象存在。因此,安装工作必须在管道试压前进行。
二、威力巴流量计
威力巴流量传感器,是根据差压式工作原理、插入式安装方法设计的流量传感器。
结构特点:科学的横面形状、独特的抗堵设计、传感器表面粗糙处理和防淤槽。
A、安装要点
1、水平管道基本安装方式,对于水平管道,测量气体时推荐安装在管道上方160度范围内,尤其对于有大量水粉的气体时,我们只推荐这样安装;
2、测量液体时推荐安装在管道下方160度范围内,尤其对于含有大量气体的液体时,我们只推荐这样安装;但有一点要注意,对于那些极易气化的液体,如液态的烯烃类介质,安装时插入方向同气体,在管道上方。
(孔板流量计测量天然气的原理)

煤矿抽放瓦斯利用孔板流量计 计算抽放方法及参考系数 Q混=Kb△h1/2δPδT=189.76a0mD2*(1/(1-0.00446x))1/2*△h1/2*(PT/760)1/2?*(293/(273+t))1/2=189.76*标准孔板流量系数*孔板截面与管道截面比*管道直径2 *〔1/(1-0.00446混合气体中瓦斯浓度)〕1/2*孔板两侧的静压差1/2 *(孔板上风端测得的绝对压力/760)1/2?*(293/(273+同点温度))1/2 Q纯=Kb△h1/2δPδTx=(Kb△h1/2δPδT)*抽采瓦斯管路中的实际瓦斯浓度 备注:1mm水柱等于9.8帕,精度要求不高时可算为10帕; 1mm汞柱等于133帕; 标准孔板流量系数为0.6327 孔板流量计由抽采瓦斯管路中增加的一个中心开孔的节流板、孔板两侧的垂直管段和取压管等组成,如下图。当气体流经管路内的孔板时,流束将形成局部收缩,在全压不变的条件下,收缩使流速增加、静压下降,在节流板前后便会产生静压差。在同一管路截面条件下,气体的流量越大,产生的压差也越大,因而可以通过测量压差来确定气体流量。 ?瓦斯混合气体流量由下式计算: ?Q=Kb△h1/2δPδT?(1) 该公式系数计算如下: ?K=189.76a0mD2?(2) b=(1/(1-0.00446x))1/2?(3) ?δP=(PT/760)1/2?(4) ?δT=(293/(273+t))1/2?(5) 式中:Q—瓦斯混合流量,米3/秒; K—孔板流量计系数,由实验室确定见表-4实际孔板流量特性系数K ?b—瓦斯浓度校正系数,由有关手册查表-3瓦斯浓度校正系数b值表 ?△h—孔板两侧的静压差,mmH2O,由现场实际测定获取; ?δP—压力校正系数; ?δT—温度校正系数; ?x--混合气体中瓦斯浓度,%; ?t--同点温度,℃; ?a0--标准孔板流量系数;(在相关手册中查出) ?m--孔板截面与管道截面比; ?D--管道直径,米; ?PT--孔板上风端测得的绝对压力,毫米水银柱; ?pT=测定当地气压(毫米水银柱)+该点管内正压(正)或负压(负)(毫米水柱)÷13.6 为了计算方便,将δT、δP、b、K值分别列入表1、表2、表3、表4中。 ?抽采的纯瓦斯流量,采用下式计算: ?Qw=x·Q?(6) ?式中x—抽采瓦斯管路中的实际瓦斯浓度,%。 ?孔板流量计在安装时要注意孔板与瓦斯管的同心度,不能装偏。在钻场内安装流量计时,应保证孔板前后各1m段应平直,不要有阀门和变径管。在抽采巷瓦斯管末端安装流量计应保证孔板前后各5m段应平直,不要有阀门和变径管。 ?各矿井应根据不同的管路条件和具体位置安设相应的流量计,准确推敲计算公式,按规定定期维护校正,以便为瓦斯抽采提供可靠数据。 例:某矿井瓦斯抽采支管直径为D=100毫米,拟定安设开口直径d=50毫米的孔板,试建立其流量方程式? 解:m=(d/D)2=(0.05/0.1)2=0.25 计算瓦斯流量特性系数值,应用公式(2)得 ?K=189.76a0mD2 =189.76×0.6327×0.25×0.I2 =0.3001 也可根据a0、m值查表4求得K值,根据瓦斯浓度查表3可得瓦斯浓度校正系数b值。 则应用公式(1)可求得混合瓦斯流量为: Q混=0.3001b△h1/2δPδT 应用公式(6)计算纯瓦斯流量得 QW=Q混X=0.3001b△h1/2δPδTX?
(孔板流量计测量天然气的原理)

了解更多关于:孔板流量计为什么要求前直管,孔板流量计 输送20 空气,没有孔板流量计算书,孔板流量计的测量,电容式孔板流量计,孔板流量计是基于,文丘里及孔板流量计实验,孔板流量计正常维护,法兰取压孔板流量计价格,孔板流量计英文,孔板流量计需要温压补偿吗,孔板流量计位置安装,文丘里孔板流量计,孔板流量计lgdj,承插式孔板流量计,孔板流量计阻力多大,标准蒸汽孔板流量计,孔板流量计测不出流量,孔板流量计需要加温压补偿吗,节流孔板气体流量计算公式
本文摘自:http://www.oen1718.com 转载请注明出处