全国免费咨询热线4000-188-588

TEL:029-88643194 FAX:029-88611928

测量水流量的一套标准孔板流量计

本文章主要介绍了:测量水流量的一套标准孔板流量计,孔板流量计计算公式体积流量的计算,孔板流量计垫片,测量水流量的一套标准孔板流量计等信息

●测量介质为液体、气体时取压位置应在管道的上半面,测量蒸汽时取压位置在管道的侧面。
●被测介质温度超过80℃,在截止阀和变送器之间加冷凝弯冷却至80℃以下。
DN15~2000(对于现场改造的弯管传感器,没有管径限制)液体0.1~12蒸汽或气体5~160±1%转换器:温度-10~45℃湿度小于85%(特殊情况请说明)
传感器:温度-50~600℃压力0~16MPa(特殊情况请说明)
4-20mARS-484RS-132AC220,50Hz或DC12~24V液体:水、油、甲醇、甲苯、液氨等
气体:高炉煤气、焦炉煤气、混合煤气、氯气、氢气、氧气、空气、氮气等
蒸汽:饱和蒸汽、过热蒸汽
(测量水流量的一套标准孔板流量计)

通过在Fluent中读取孔板前后D和D/2轴截面上的平均压力值ph、pl,得出Δp=14·05Pa,进而计算出数值模拟流出系数C′=0·6508;根据ISO经验公式计算出的推荐流出系数C=0.6323,两者的相对误差δ为2.93%,可见C′与C吻合较好。虽然CFD数值模拟与实验实测一样都存在着各种误差影响,但仍足以证明CFD数值模拟模型的正确性。
2各参数变化对流出系数影响的讨论
为了研究不同流量、直径比、孔板厚度和流体介质对标准孔板流量计流动情况的影响,得出一些具有指导意义的结论,在工况温度均为300K的情况下,每次仅改变其中某个参数,利用Fluent进行数值模拟和相关分析讨论。如不特别指出,所建三维模型边界层的第一行百分比都选用15%。
(测量水流量的一套标准孔板流量计)

(测量水流量的一套标准孔板流量计)

供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约2%附加误差。
(2)LG的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件下其衬里需考虑。
(3)是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。如果转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。
(测量水流量的一套标准孔板流量计)

北京化工大学化工原理实验流体阻力实验北京化工大学化工原理实验报告实验名称流体阻力实验班级姓名学号序号同组人设备型号实验日期一、实验摘要本实验使用UPRSⅢ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re和相对粗糙度的函数。该实验结果可为管路实际应用和工艺设计提供重要的参考。关键词摩擦系数,局部阻力系数,雷诺数,相对粗糙度二、实验目的1、测量湍流直管的阻力,确定摩擦阻力系数。2、测量湍流局部管道的阻力,确定摩擦阻力系数。3、测量层流直管的阻力,确定摩擦阻力系数。4、验证在湍流区内摩擦阻力系数λ与雷诺数Re和相对粗糙度的函数5、将所得光滑管的λ-Re方程与Blasius方程相比较。三、实验原理1、直管摩擦阻力不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流作用产生摩擦阻力。此外,流体经过突然扩大、弯头等管件时,由于运动速度方向突然变化,也会产生局部阻力。利用量纲分析的方法,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关,可表示为引入无量纲数群雷诺数相对粗糙度长径比从而得到令,则可得阻力系数与压头损失之间的关系,这种关系可通过实验测得。(1)式中直管阻力J/kg,被测管长m,被测管内径m,平均流速m/s,摩擦阻力系数。根据机械能衡算方程,实验测量(2)对于水平无变径直管道,结合式(1)与式(2)可得摩擦系数测量当流体在管径为d的圆形管中流动时选取两个截面,用U形压差计测出这两个截面的压强差,即为流体流过两截面间的流动阻力。通过改变流速可测出不同Re下的摩擦阻力系数,这样便能得到某一相对粗糙度下的关系。由前人经验,当在范围内时,其关系满足Blasius关系式,在层流范围内满足线性关系,见表1。表1摩擦阻力系数与雷诺数关系400011858804000Re临界点临界点以上水力光滑管\粗糙管\2、局部阻力(3)将局部阻力系数,平均流速u,代入方程即可确定局部阻力。式中与局部结构关系见表2表2局部阻力系数与局部结构关系(Re4000)结构突扩管截止阀球阀常数常数对于水平放置条件,根据式(1)(3)可得局部阻力系数计算式为(无变径)和(有变径)式中,p1p2为上下游截面压强差,u1u2为平均流速,ρ为密度四、实验流程与设备图1流体阻力实验带控制点工艺流程1-水箱;2-水泵;3-涡轮流量计;4-主管路切换阀;5-层流管;6-截止阀;7-球阀;8-不锈钢管;9-镀锌钢管;10-突扩管;11-流量调节阀(闸阀)12-层流管流量阀(针阀)13-变频仪实验介质水(循环使用)研究对象不锈钢管,l1.500m,d0.021m;镀锌管,l1.500m,d0.021m;突扩管,l10.020m,d10.016,l20.280m,d20.042;截止阀,DN20,d0.021m;球阀,DN20,d0.021m;层流管,l1.500m,d0.003m;仪器仪表涡轮流量计,LWGY-25型,0.610m3/h,精确度等级0.5;温度计,Pt100,0200℃,精度等级0.2压差传感器,WNK3051型,-20100kPa,精度等级0.2显示仪表AI-708等,精度等级0.1。变频仪西门子MM420型。其他计算机数据采集和处理,380VAC220VAC五、实验操作1、准备1)打开电脑,启动“流体阻力实验”软件。2)连接数据线,并按照要求正确安装相应驱动。2)按下控制柜绿色按钮开启控制柜,至实验结束再按下红色按钮关闭。4)开泵,关闭流量调节阀,按变频器上的绿色按钮开启泵,降频至25Hz。5)主管路排气全开流量调节阀、压差传感器排气阀,再关闭流量调节阀约10秒。6)测压管线排气打开全部测压阀、压差传感器排气阀,查看Δp孔板。7)再次打开传感器排气阀,10秒后关闭,重复多次至零点不变,记录Δp孔板。2、不锈钢管实验1)重复准备过程的7)并记录Δp孔板。2)打开不锈钢管测量管路切换阀,测压阀。3)打开流量调节阀从小到大调节流量,3.5m3/h以上通过变频器调节,记录数据。3、镀锌管实验1)重复准备过程的7)并记录Δp孔板。2)打开镀锌管测量管路切换阀,测压阀。关闭其他切换阀、测压阀。3)打开流量调节阀从小到大调节流量,3.5m3/h以上通过变频器调节,记录数据。4、球阀、截止阀实验1)重复准备过程的7)并记录Δp孔板。2)打开球阀、截止阀测量管路切换阀。关闭其他切换阀、测压阀。3)打开球阀两端的测压阀。4)打开流量调节阀从小到大调节流量,3.5m3/h以上通过变频器调节,记录数据。5)关闭球阀两端测压阀,开启截止阀两端测压阀,重复上述过程,记录数据。5、层流管实验1)重复准备过程的7)并记录Δp孔板。2)降低水泵频率。3)关闭其他切换阀、测压阀。全开层流管流量阀。4)调节层流管路出口阀,改变管路压降,用量桶测量一定时间内流出的液体量,并记录其重量。6、结束实验,关闭全部阀门,通过变频器关泵,关闭控制柜。六、实验数据表格及计算举例1、湍流不锈钢管数据表ΔP0/kPal/md/mε/mm0.081.5000.02050.02序号水流量qv/m3h-1管路压降Δp/kPa水温度t/℃水密度ρ/kgm-3水粘度μ/Pas水流速u/ms-1雷诺数Re摩擦系数λλblasius10.600.3719.5998.21.005E-030.51102870.0310.03120.850.6219.5998.21.005E-030.72145730.0290.02931.000.8019.5998.21.005E-030.84171450.0280.02841.311.2519.5998.21.005E-031.10224590.0260.02651.581.7219.5998.21.005E-031.33270880.0250.02561.982.5419.5998.21.005E-031.67339460.0240.02372.543.9419.5998.21.005E-032.14435470.0230.02283.005.2619.6998.21.005E-032.53514340.0220.02194.059.0619.6998.21.005E-033.41694350.0210.019104.9813.2819.7998.21.005E-034.19853800.0210.019116.0118.6820.0998.21.005E-035.061030390.0200.018127.3027.0220.2998.21.005E-036.151251550.0200.017计算示例以第一组为例1)流速2)雷诺数3)摩擦系数4)理论摩擦系数2、湍流镀锌管数据表ΔP0/kPal/md/mε/mm0.071.5000.02200.10序号水流量qv/m3h-1管路压降Δp/kPa水温度t/℃水密度ρ/kgm-3水粘度μ/Pas水流速u/ms-1雷诺数Re摩擦系数λλblasius10.590.3321.0998.21.005E-030.4394260.0410.03220.780.4821.1998.21.005E-030.57124610.0370.03030.950.6621.2998.21.005E-030.69151770.0360.02841.291.0521.2998.21.005E-030.94206080.0320.02651.601.5021.2998.21.005E-031.17255610.0310.02561.962.1221.2998.21.005E-031.43313120.0290.02472.483.2021.2998.21.005E-031.81396190.0280.02283.024.5521.4998.21.005E-032.21482460.0270.02194.007.5321.6998.21.005E-032.92639020.0260.020104.9611.2321.9998.21.005E-033.63792390.0250.019115.9515.7222.0998.21.005E-034.35950550.0240.018127.2723.0822.5998.21.005E-035.321161420.0240.017计算示例以第一组为例1)流速2)雷诺数3)摩擦系数4)理论摩擦系数3、湍流突扩管数据表ΔP0/kPal1/md1/ml2/md2/mε/mm0.050.0200.01600.2800.04200.02序号水流量qv/m3h-1局部压降Δp2-1/kPa水温度t/℃水密度ρ/kgm-3水粘度μ/Pas水流速u1/ms-1水流速u2/ms-1雷诺数Re1局部阻力系数ζζ理论值12.001.1822.6998.21.005E-032.760.401439330.830.7322.982.6422.6998.21.005E-034.120.598654600.830.7334.004.7622.7998.21.005E-035.530.802878660.820.7344.987.4822.7998.21.005E-036.880.4000118588.820.73计算示例以第一组为例1)流速2)雷诺数3)局部阻力系数4)理论局部阻力系数4、湍流截止阀全开ΔP0/kPad/m0.050.0205序号水流量qv/m3h-1局部压降Δp/kPa水温度t/℃水密度ρ/kgm-3水粘度μ/Pas水流速u/ms-1雷诺数Re局部阻力系数ζ12.0313.8423.1998.21.005E-031.71348039.4623.0029.9023.1998.21.005E-032.53514349.3733.9451.1023.1998.21.005E-033.32675499.29计算示例以第一组为例1)流速2)雷诺数3)局部阻力系数5、湍流球阀(全开)ΔP0/kPad/m0.050.0205序号水流量qv/m3h-1局部压降Δp/kPa水温度t/℃水密度ρ/kgm-3水粘度μ/Pas水流速u/ms-1雷诺数Re局部阻力系数ζ11.981.2323.0998.21.005E-031.67339460.8522.962.5423.0998.21.005E-032.49507480.8033.944.1823.0998.21.005E-033.32675490.75计算示例以第一组为例1)流速2)雷诺数3)局部阻力系数6、层流管数据表ΔP0/kPal/md/m0.051.5000.0030序号水质量/g时间/s管路压降Δp/kPa水温度t/℃水密度ρ/kgm-3水粘度μ/Pas水流量qv/Lh-1水流速u/ms-1雷诺数Re摩擦系数λλ理论值124.060.030.3823.1998.21.005E-031.440.061690.4130.380245.059.970.5823.1998.21.005E-032.700.113160.1880.202386.759.800.9823.1998.21.005E-035.220.216110.0880.105462.229.961.4023.3998.21.005E-037.470.298760.0630.073586.729.951.9423.5998.21.005E-0310.420.4112210.0450.0526124.130.282.9424.0998.21.005E-0314.750.5817290.0340.0377171.330.036.0025.1998.21.005E-0320.540.8124060.0370.027计算示例以第一组为例1)流量2)流速3)雷诺数4)摩擦系数5)理论摩擦系数七、实验结果作图及分析实验结果关系曲线1、对光滑管与粗糙管的实验结果分析通过实验测出的光滑管(不锈钢管)的关系曲线与Blasius理论得出的曲线在Re临界值之前十分接近,验证了Blasius公式在Re4000至临界值区间上与实际情况吻合得较好。当雷诺数继续增大后,阻力系数逐渐趋近于一个定值,此时实验曲线开始向上偏离理论曲线。对于粗糙管(镀锌管),其关系曲线形态与光滑管大体相似,同等条件下粗糙管的阻力系数比光滑管的大,这表明摩擦阻力系数不仅随雷诺数的变化而变化,其大小还与管道的相对粗糙度有直接关系。此外,粗糙管的关系曲线与理论曲线偏离明显,表明Blasius公式对水力光滑管更加适用,而不适用于粗糙管。2、对层流管的实验结果分析总体上,层流管的数据点在层流区大体落在理论曲线附近,呈线性分布,但随着流速增加,曲线较理论线有向下偏离,这与测量过程中的误差有一定关系,对此可通过延长测量流量的时间并在每次改变流速后多稳定一段时间,让管内流动更趋近于稳态来提高测量的稳定性。3、对突扩管的实验结果分析在突扩管试验中,得出不同流速下(湍流),突扩管的局部阻力系数大体相同,较理论值偏高,这很可能是由于局部件长时间使用后有一定程度的损耗造成的,但对于一定状态下的同一种局部件,其局部阻力基本为定值。4、对球阀与截止阀的实验结果分析从实验数据上看,两种局部件的局部阻力系数随流速的增加略有下降,但幅度不大,相较而言,同种情况下,球阀的局部阻力系数远小于截止阀,这与其结构密切相关,八、思考题1)在测量前为什么要将设备中的空气排尽怎样才能迅速排尽主管路中如存在气体会影响流体流动的连续性,破坏本实验进行的前提条件,测量管路中存在气泡会使测量值出现很大的波动,都将严重影响实验的真实性和准确性,因此必须尽可能排尽。可通过加大液体流速,并增大排气通道加快排气。2)在不同设备不同温度下测定的数据能否关联在一条曲线上不能,一条关系曲线描述了同一设备在一定时间的阻力系数与通过流体流动状态间的关系,设备的特性不同,其曲线也不同,对同一设备,使用时间不同,也会对其造成一定影响。不同设备的数据不能关联在一起。而同一设备不同温度下测定的可以关联,温度影响流体的黏度与密度,即影响Re值,对设备特性影响不大。3)以水为工作介质测得的关系能否适用于其他类型的牛顿流体为什么可以,牛顿流体具有相似的流动性质,以水测得的关系曲线同样适用于与其相似的牛顿流体,液体密度黏度不同会在雷诺数中体现,而不会影响关系。4)如果同一根不锈钢管按下图三种方式放置,则阻力hf1,hf2,hf3为多少R1,R2,R3是否相等,为什么,,由直管阻力公式,阻力系数、管长、直径、流速均相同,Hf相等,R1R2R3。5)伯努利方程与机械能衡算式有什么关系他们的适用条件是什么机械能衡算适用于所有流体。伯努利方程只适用于定态流动的理想流体,是机械能衡算式的一种导出式。流体阻力演示实验记录表1截面2截面3截面4截面位头(Pa)4000118588静压头(Pa)40001185881600速度头(Pa)4000118588机械能(Pa)40001185882030液体通过管路时存在摩擦阻力,通过不同的管路、管件时所受到的阻力不同。流型不同。-10-
(测量水流量的一套标准孔板流量计)

(4)用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。
(5)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能,好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,LG可以排除同相干扰和正交干扰。
管道安装条件:
1节流件前后的直管段必须是直的,不得有肉眼可见的弯曲。
(测量水流量的一套标准孔板流量计)

海南波形钢腹板板材套定额
该项技术目前已成功应用在5座实体工程,分别是50m单箱双室波形钢腹板PC简支梁--青海三道河桥、40m双箱单室波形钢腹板PC简支梁—广西百隆高速东部二号高架桥、主跨120m的山东鄄城黄河公路大桥主桥、主跨135m的河南桃花峪黄河大桥跨大堤桥以及主跨120m的宁夏叶盛黄河公路大桥。其中山东鄄城黄河公路大桥主桥全长1460米,跨径组合70m+11×120m+70m,是国内第一座采用悬臂施工的波形钢腹板组合桥梁。2、第一块钢腹板采用电焊与运输车的平板固定,防止其滑移造成事故。焊接时增加型钢或码板,应与钢腹板卡牢。第二块及第三块采用钢丝绳或麻绳与第一块绑扎牢固,防止滑移,且上下两层钢腹板之间必须铺设垫木防止其发生摩擦。
(测量水流量的一套标准孔板流量计)

了解更多关于:孔板流量计测的是流体的什么速度,孔板流量计校表,标准孔板流量计计算软件,孔板流量计恒压差,孔板流量计量程计算,哪些原因造成孔板流量计不准,孔板流量计 E h,四川力尔巴孔板流量计壳体,4分之1圆孔板流量计图,孔板流量计导压管安装图,孔板压缩空气流量计,孔板流量计与平衡孔板流量计的差别,内藏孔板流量计安装方向,孔板流量计是利用测量,标准孔板流量计公司,孔板流量计阻力,孔板流量计流量的选择,孔板流量计全套安装图,在管路上装有标准孔板流量计,孔板流量计加减号方向
本文摘自:http://www.oen1718.com 转载请注明出处