全国免费咨询热线4000-188-588

TEL:029-88643194 FAX:029-88611928

孔板流量计跳字是什么原因

本文章主要介绍了:孔板流量计跳字是什么原因,一体化孔板流量计d20,孔板流量计测得,孔板流量计跳字是什么原因等信息

3、正负取压口引出的导压管在任何情况下都要保持平行;
4、孔板一般都要配合差压变送器,导压管与差压变送器连接时要注意正负压不要装反,“H”为正,“L”为负;
5、测气体差压装置建议放在管道上方,液体的话放在管道下部,测蒸汽嘛如果有配冷凝罐的话,应当保持冷凝罐在同一水平面高度上。
6、如果是直管段要求,应按照孔板节流装置计算书计算,有计算出安装孔板时要求的前后直管段长度,其次还可以按照前20D后10D来装(D是指孔板的口径)
安装时要满足至少按流向前10D后5D,D指孔板的工称直径,如DN500的,即孔板流入方向为5000mm,流出方向为2500mm。
(孔板流量计跳字是什么原因)

本文针对孔板流量计和V锥流量计,对安装条件对其测量准确度的影响进行了实验研究,内容和研究成果如下:
1)对孔板流量计和V锥流量计的研究现状进行了详细地介绍,针对流量计对测量准确度要求比较高的问题,说明了本文的研究目的与意义。
2)对孔板流量计和V锥流量计的工作原理进行了分析,在此基础上,利用伯努利方程和连续性方程推导出了孔板流量计和V锥流量计的流量测量模型。根据流体的分类,分别对不可压缩流体和可压缩流体进行了分析推导。孔板流量计的研究比较早,有很多的参考和实际研究成果,而V锥流量计的出现时间比较晚,对其结构尚未做标准化工作,对里面的各项参数也不是很清楚,所以在这里对V锥流量计的理论进行分析具有重大的意义,为下面的实验研究打下了良好的理论基础。
(孔板流量计跳字是什么原因)

在孔板流量计设计计算中,重要的是要处理好刻度流量、差压上限和β之间的关系。根据刻度流量,设定一常规β值,计算△p值,再根据△p值适当调整β值。刻度流量通常为通常操作流量的1.3倍和大流量的1.1倍,两者取大值,或者满足正常流量的是刻度流量的70%左右,小流量为25%以上,差压的上限一般推荐10、16、25、40、50kpa的数级,值推荐0.5~0.6
孔板流量计维护保养的基本原则介绍
我们在使用孔板流量计出现故障时候,要怎样维修,孔板流量计的维修又有哪些基本原则需要遵守?下面小编就带您了解一下。
1.先机械后电气——只有在确定机械件无故障后,再进行电气方面的检查。检查电路故障时,应利用检测仪器寻找故障部位,确认无接触不良故障后,再有针对性地查看线路与机械的运作关系,以误判;
(孔板流量计跳字是什么原因)

如果你没有计算书,你只需要向制造厂提供下列数据管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式2009-05-10171129|分类技术资料|标签|字号大中小订阅引用蝈蝈的孔板流量计理论流量计算公式(1)差压式流量计差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;βd/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。对于天然气而言,在标准状态下天然气积流量的实用计算公式为式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As3.179410-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式简单来说差压值要开方输出才能对应流量实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧一.流量补偿概述差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例QvCεΑ/sqr(2ΔP/(1-β^4)/ρ1)其中C流出系数;ε可膨胀系数Α节流件开孔截面积,M^2ΔP节流装置输出的差压,Pa;β直径比ρ1被测流体在I-I处的密度,kg/m3;Qv体积流量,m3/h按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下Q0.004714187*d^2*ε*@sqr(ΔP/ρ)Nm3/h0C101.325kPa也即是画面要求显示的0度标准大气压下的体积流量。在根据密度公式ρP*T50/(P50*T)*ρ50其中ρ、P、T表示任意温度、压力下的值ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点结合这两个公式即可在程序中完成编制。二.程序分析1.瞬时量温度量必须转换成绝对摄氏温度;即273.15压力量必须转换成绝对压力进行计算。即表压大气压力补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。2.累积量采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。孔板数学模型体积瞬时流量公式QvKvA√ΔP/ρ质量瞬时流量公式QmKmA√ΔPρ式中Qv体积流量,单位m3/hQm质量流量k单位g/hKv体积流量系数,单位,,,(倒推一哈就中咧,呵呵)Km质量流量系数,单位,,,(。。。。。。。,呵呵)A管道内,垂直流量方向的横截面积,单位m2ΔP孔板前后压差,单位Paρ介质的瞬时密度(对气体,为折算到标准状态的密度),单位kg/m3孔板流量计的流量计算公式字体大小大|中|小2009-10-271504-阅读1916-评论0一.流量补偿概述差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例QvCεΑ/sqr2ΔP/1-β^4/ρ1其中C流出系数;ε可膨胀系数Α节流件开孔截面积,M^2ΔP节流装置输出的差压,Pa;β直径比ρ1被测流体在I-I处的密度,kg/m3;Qv体积流量,m3/h按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下Q0.004714187*d^2*ε*@sqrΔP/ρNm3/h0C101.325kPa也即是画面要求显示的0度标准大气压下的体积流量。在根据密度公式ρP*T50/P50*T*ρ50其中ρ、P、T表示任意温度、压力下的值ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点结合这两个公式即可在程序中完成编制。二.煤气计算书(省略)三.程序分析1.瞬时量温度量必须转换成绝对摄氏温度;即273.15压力量必须转换成绝对压力进行计算。即表压大气压力补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。2.累积量采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。
(孔板流量计跳字是什么原因)

液体流过垂直于流动方向的磁场。其感应电压信号通过2个与液体直接触的电极检出靶式流量计。测量流量时,插入式电磁流量计工作原理是基于法拉第电磁感应定律靶式流量计,并通过专用电缆传送至智能变送接器。感应出一个与平均流速(体积流量)成正比的电压,再将流量标准的4~20MA1~5VDC信号输出到流量二次仪表或DCS靶式流量计,在选择电磁流量计。要根据流量来选择和决定,5到3m每秒靶式流量计,组成插入式电磁流量计主要由传感器、智能变送器和专用电缆组成。电磁流量计的传感器口径和管径一样即可,但是***不要超过5m每秒靶式流量计。其作用是根据导电介质(流体)流过励磁线圈的速度不同在电极上产生相应的感应电势(5~60mV),由于电势信号是5~60mV的弱信号。所以电缆要充分考虑屏蔽性和抗干扰性,导电特性越强传送距离越远一般传送距离为~20500m,转换成流量信号(包括瞬时量和累计量)进行现场显示靶式流量计。得出流量结果和标准流量信号。电磁流量计在满度流量的时候液体的流速可以在1到10m每秒的范围内选用靶式流量计。介4000118588不受限制的.仪表口径不一定非要和管径一致,除非电磁流量计的衬里材料可以承受液流的冲刷靶式流量计。(1)传感器由电极和励磁线圈组成,智能变送器根据电势的大小和电磁流量数学模型进行运算靶式流量计,(2)专用通讯电缆的作用是传感器向智能变送器传送毫伏电势信号,智能变送器向励磁线圈提供振荡电压靶式流量计。对于不同粘度的液体。励磁信号是高频低幅值的振荡信号,管道中流速通常是经济流速1,电缆的长度和截面积成正比,和介质的电导成正比,在这样的管道上靶式流量计。(3)智能变送器的作用是将传感器的感应电势信号放大,再根据电势流量数学模型和公式进行计算靶式流量计,对于口径的选择要根据实际需求去选择,各种流量参数的调整和标定参数的设置在智能变送器上进行。
(孔板流量计跳字是什么原因)

LGB焊接式孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及天然气的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。
LGB焊接式孔板流量计正确调试方法
1、接上信号线、电源线
2、开启进口、出口阀门,进出口阀门开度要一致
3、打开不锈钢三阀组平衡阀,缓慢开启孔板高低压端的阀门,待流体通过流量计后关闭不锈钢三阀组平衡阀即可。
LGB焊接式孔板流量计安装管道条件:
(1)节流件前后的直管段必须是直的,不得有肉眼可见的弯曲。
(孔板流量计跳字是什么原因)

石油化工设计手册·第3卷:化工单元过程(下修订版) 出版时间: 2015 内容简介 《石油化工设计手册·第3卷:化工单元过程(下修订版)》共分四卷出版。第三卷“化工单元过程”分上下两册,上册内容有流体输送机械、非均相分离、搅拌与混合、制冷与深度冷冻、换热器、蒸发、工业结晶过程与设备设计、蒸馏;下册内容有气体吸收与解吸、液液萃取、吸附与变压吸附、气液传质设备、膜分离、干燥、化学反应器。以指导设计人员在相应的化工单元过程设计中正确运用、选取为原则,并列举相应的实际应用实例。适合从事石油化工、食品、轻工等行业技术人员阅读参考。 第1章气体吸收与解吸 1.1概述1 1.1.1吸收(解吸)过程的基本概念1 1.1.1.1吸收与解吸1 1.1.1.2单组分与多组分吸收1 1.1.1.3物理吸收与化学吸收1 1.1.1.4等温吸收与非等温吸收1 1.1.2吸收(解吸)设备与流程1 1.1.2.1吸收过程适宜条件1 1.1.2.2吸收设备1 1.1.2.3吸收流程2 1.1.3吸收(解吸)过程在石油化工中的应用4 1.1.4吸收过程的技术经济评价4 1.1.4.1吸收过程的技术指标4 1.1.4.2吸收过程的主要经济指标5 1.1.4.3吸收过程的评价5 1.2吸收过程气液平衡5 1.2.1气液相平衡概念5 1.2.2气液相平衡关系式6 1.2.2.1亨利定律6 1.2.2.2热力学平衡关系式6 1.2.3平衡数据的来源7 1.2.4由热力学关系求平衡系数7 1.2.5温度与压力对平衡系数的影响9 1.2.6气体在电解质或非电解质水溶液中的溶解度10 1.2.6.1气体在电解质水溶液中的溶解度10 1.2.6.2气体在非电解质水溶液中的溶解度12 1.2.7化学吸收的相平衡12 1.2.8若干体系的气液平衡数据15 1.2.9预测型分子热力学预测溶解度29 1.2.9.1状态方程法29 1.2.9.2活度系数法35 1.3连续接触设备(填料塔)设计计算38 1.3.1设计步骤38 1.3.1.1溶剂选择38 1.3.1.2操作条件的确定38 1.3.1.3溶剂用量(液气比)的确定38 1.3.1.4设备选择40 1.3.1.5塔径的确定40 1.3.1.6塔高的计算41 1.3.2单相与相际传质速度方程41 1.3.3传质单元数与传质单元高度44 1.3.3.1定义44 1.3.3.2传质单元数的计算46 1.3.4传质系数和有效传质表面的通用关联式51 1.3.4.1Billet模型51 1.3.4.2SRP?Ⅱ模型56 1.3.4.3修正的恩田(Onda)模型59 1.3.5传质系数与传质单元高度的数据61 1.3.6填料塔的当量高度(HETP)68 1.4阶段接触设备(板式塔)的设计计算70 1.4.1平衡级(理论级)方法70 1.4.2图解法求平衡级数70 1.4.3解析法求平衡级数71 1.4.3.1贫气吸收或解吸71 1.4.3.2富气吸收74 1.4.4多组分吸收(解吸)严格算法76 1.4.4.1基本方程组76 1.4.4.2独立变量数及其指定77 1.4.5级(板)效率77 1.4.6利用MSExcel软件处理板式塔流体力学和塔板效率数据81 1.4.6.1流体力学数据计算81 1.4.6.2塔板效率数据83 1.4.7气液固三相流体力学和塔板效率84 1.4.7.1气液固三相流体力学84 1.4.7.2气液固三相塔板效率86 1.5非等温吸收87 1.5.1吸收过程的热效应87 1.5.2非等温吸收近似算法88 1.5.3严格算法88 1.6化学吸收92 1.6.1概述92 1.6.2化学吸收分类93 1.6.3增强因子94 1.6.4化学吸收速率94 1.6.4.1一级和拟一级不可逆反应95 1.6.4.2瞬间不可逆反应97 1.6.4.3化学吸收的传质模型与增强因子99 1.6.5化学吸收过程模拟与解101 1.6.6化学吸收设备的选型与计算103 1.6.6.1化学吸收设备的选型103 1.6.6.2填料吸收反应器104 1.6.6.3板式吸收塔112 1.7气体的解吸115 1.7.1概述115 1.7.2物理解吸115 1.7.2.1物理解吸的计算115 1.7.2.2吸收蒸出(解吸)塔116 1.7.2.3物理解吸的选择性118 1.7.3有化学反应的解吸118 1.7.3.1概述118 1.7.3.2解吸塔设计120 1.8吸收过程在石油化学工业中的应用120 1.8.1催化裂化吸收稳定过程121 1.8.1.1概述121 1.8.1.2吸收(解吸)过程的模拟121 1.8.1.3吸收?解吸流程的改进125 1.8.1.4塔设备的设计和改进127 1.8.2CO2及H2S的脱除129 1.8.2.1CO2的脱除129 1.8.2.2典型工艺过程及设备设计130 1.8.2.3H2S的脱除140 1.8.3SO2的脱除140 1.8.3.1SO2脱除方法140 1.8.3.2氨法脱SO2的化学反应过程141 1.8.3.3气液平衡141 1.8.3.4热效应142 1.8.3.5氨酸法的工艺流程142 1.8.3.6工艺与设备设计参数142 1.8.3.7氨法在电厂烟气脱硫中的应用146 主要符号说明147 参考文献149 第2章液?液萃取 2.1概述154 2.1.1液?液萃取过程的特点154 2.1.2液?液萃取在石油化工中的应用154 2.2液?液萃取平衡及其数学模型156 2.2.1分配系数和分离系数156 2.2.2相图157 2.2.3液?液萃取平衡的热力学基础158 2.2.4液?液萃取平衡的预测――UNIFAC方程160 2.3液?液萃取过程的设计计算164 2.3.1单级萃取过程164 2.3.2多级错流萃取和多级逆流萃取165 2.3.3连续逆流萃取过程167 2.3.4复合萃取169 2.3.5用于复杂体系的矩阵解法174 2.4考虑纵向混合的萃取塔的设计计算176 2.4.1萃取塔内的纵向混合176 2.4.2考虑纵向混合的萃取塔的数学模型177 2.4.3扩散模型及其近似解法178 2.5萃取设备的分类和选型182 2.5.1萃取设备的分类182 2.5.2常用萃取设备183 2.5.3萃取塔的比较和选型190 2.6填料萃取塔的设计计算192 2.6.1填料萃取塔的特点192 2.6.2设计计算步骤194 2.6.3塔径的计算195 2.6.4塔高的计算198 2.6.5设计计算举例201 2.7转盘萃取塔(RDC)的性能、设计和改进203 2.7.1概述203 2.7.2转盘萃取塔液泛速度的计算205 2.7.3转盘萃取塔传质特性的计算206 2.7.4转盘塔的纵向混合207 2.7.5设计计算举例208 2.7.6转盘萃取塔的改进212 主要符号说明214 参考文献215 第3章吸附与变压吸附 3.1吸附过程基础理论218 3.1.1吸附基本原理218 3.1.2物理吸附和化学吸附219 3.1.3吸附热力学基础220 3.1.3.1吸附平衡220 3.1.3.2吸附热224 3.1.4吸附动力学基础225 3.1.4.1吸附过程速度225 3.1.4.2固定床吸附动态特性226 3.2吸附剂229 3.2.1特性参数229 3.2.2常用吸附剂230 3.2.2.1硅胶(silicagel,SG)(参见第3.7节)230 3.2.2.2活性氧化铝(activatedalumina)231 3.2.2.3活性炭(activatedcarbon,AC)231 3.2.2.4沸石分子筛(zeolitemolecularsieves,MS或ZMS)232 3.2.2.5碳分子筛(carbonmolecularsieves,CMS或MSC)234 3.2.2.6活性碳纤维(activatedcarbonfiber,ACF)235 3.2.2.7浸渍活性炭(impregnatedactivatedcarbon)235 3.2.2.8合成聚合物(synthetiepolymers)235 3.2.3物理性质235 3.3吸附分离工艺236 3.3.1吸附分离程度的判别236 3.3.2吸附剂对气体的选择性237 3.3.2.1选择分离机理237 3.3.2.2吸附剂与吸附质之间的相互作用对选择性的影响238 3.3.2.3同种吸附剂结构对选择性的影响239 3.3.3吸附分离工艺的分类240 3.3.3.1吸附剂再生方法分类240 3.3.3.2运行方式分类242 3.4变温吸附循环工艺及其应用243 3.4.1变温吸附工艺243 3.4.2变温吸附应用244 3.4.2.1脱除或回收有机化合物244 3.4.2.2气体中脱除或回收酸性组分250 3.4.2.3低沸点气体的低温净化254 3.4.2.4干燥脱水(在第3.7节中专述)259 3.5变压吸附(pressure?swingadsorption,PSA)循环工艺及其应用259 3.5.1变压吸附原理流程和特点259 3.5.1.1变压吸附原理流程259 3.5.1.2变压吸附工艺对吸附剂的要求259 3.5.1.3吸附塔死空间体积的重要性261 3.5.1.4吸附系数和分离系数261 3.5.2变压吸附工艺261 3.5.2.1从气相提取产品的工艺262 3.5.2.2从吸附相提取产品的工艺267 3.5.2.3同时从气相及吸附相提取产品的工艺268 3.5.3变压吸附技术的应用269 3.5.3.1从富氢气体中回收和提纯氢气269 3.5.3.2从变换气中制取合成气277 3.5.3.3空气干燥及脱除二氧化碳279 3.5.3.4从空气中制取富氧、纯氮、纯氧281 3.5.3.5天然气净化287 3.5.3.6从煤层气中浓缩甲烷288 3.5.3.7从混合气中提取二氧化碳288 3.5.3.8从混合气中提取一氧化碳290 3.5.3.9从工厂废气中回收有机溶剂292 3.5.3.10潜水呼吸气的净化293 3.5.3.11垃圾填埋气净化回收甲烷294 3.5.3.12炼油厂催化裂化干气提浓回收乙烯296 3.5.3.13液相吸附分离石脑油中的芳烃298 3.6其它的循环吸附工艺298 3.6.1置换冲洗(displacement?purgeAdsorption,DPA)工艺298 3.6.2变压参数泵(pressureswingparametricpumping)吸附工艺301 3.6.3循环区域吸附(cyclingzoneadsorption,CZA)工艺301 3.6.4色谱分离(chromatographicseparations)工艺302 3.6.5移动床(movingbed)吸附工艺305 3.6.6流化床(fluidizedbed)吸附工艺307 3.6.7模拟移动床(simulatedmovingbed,SMB)吸附工艺309 3.7气体吸附干燥脱水工艺312 3.7.1吸附干燥的原理及意义312 3.7.2湿气体的性质312 3.7.2.1绝对湿度(ψa)312 3.7.2.2相对湿度(ψr)312 3.7.2.3比湿度(d)313 3.7.2.4露点(td)313 3.7.2.5湿气体比热容(cH)313 3.7.2.6湿气体比焓(I)314 3.7.3干燥方法314 3.7.4吸附干燥的基本原理315 3.7.5常用的吸附干燥剂316 3.7.5.1硅胶(可参见第3.2.2.1节)316 3.7.5.2活性氧化铝(参见第3.2.2.2节)316 3.7.5.3分子筛(参见第3.2.2.4节)317 3.7.6再生方法317 3.7.7变温吸附干燥工艺317 3.7.7.1TSA干燥工艺流程318 3.7.7.2TSA干燥装置设计原则320 3.7.7.3节能流程330 3.7.7.4转轮式干燥器331 3.7.8变压吸附干燥工艺332 3.7.8.1PSA干燥工艺流程332 3.7.8.2PSA干燥装置设计原则333 3.7.8.3PSA干燥、操作条件334 3.7.9吸附干燥的特点及适用场合335 3.8固定床吸附塔的结构335 3.8.1轴流塔335 3.8.2径流塔336 3.8.3嵌入式蜂窝状板块径流塔337 3.8.4换热型吸附塔337 3.9转轮吸附器(旋转式吸附器)338 3.9.1TSA转轮吸附器339 3.9.2PSA转轮吸附器343 3.10反应器/吸附器344 参考文献346 第4章气液传质设备 4.1概述356 4.2板式塔357 4.2.1板式塔的分类357 4.2.2塔板的结构参数358 4.3板式塔初步设计内容及一般步骤359 4.3.1塔径估算及板间距初选359 4.3.2溢流区设计360 4.3.2.1降液管及其受液盘的设计360 4.3.2.2溢流堰的设计363 4.3.3鼓泡区设计364 4.3.4流体力学性能及计算方法365 4.3.4.1塔板上气液两相的接触状态365 4.3.4.2塔板上气液两相的分布状态367 4.3.4.3塔板持液量368 4.3.4.4堰上液流高度368 4.3.4.5液面梯度370 4.3.4.6塔板压降370 4.3.4.7降液管内液层高度374 4.3.5塔的操作极限与负荷性能图375 4.3.5.1塔板的操作限制375 4.3.5.2板式塔的负荷性能图376 4.3.6全塔设计优化382 4.3.7板效率及塔高的确定384 4.3.7.1全塔效率与板效率384 4.3.7.2塔高的确定386 4.4筛孔塔板387 4.4.1筛板的结构特性387 4.4.2筛板塔的设计示例388 4.5浮阀型塔板392 4.5.1概述392 4.5.2F1型浮阀394 4.5.2.1F1型浮阀结构394 4.5.2.2F1型浮阀的排列396 4.5.2.3塔板压降396 4.5.2.4设计计算示例396 4.5.3V?4型浮阀402 4.5.4十字架形浮阀402 4.5.5Nutter浮阀403 4.5.6导向组合浮阀403 4.5.6.1导向组合条阀结构特点404 4.5.6.2导向组合浮阀塔板组合方式405 4.5.6.3组合导向浮阀塔盘的结构及水力学性能计算405 4.5.7波纹导向组合浮阀塔板409 4.5.8ADV微分浮阀塔板410 4.5.8.1概述410 4.5.8.2ADV?微分浮阀塔板的整体技术410 4.5.8.3ADV?微分浮阀塔板的水力学性能及计算方法411 4.5.9SuperV型浮阀412 4.5.9.1SuperV型系列浮阀塔板结构412 4.5.9.2各型号适用范围413 4.5.9.3SuperV型系列浮阀塔板的水力学性能及计算方法413 4.5.10微型浮阀413 4.6固定阀型塔板415 4.6.1导向筛板415 4.6.1.1结构及特点416 4.6.1.2流体力学计算417 4.6.2斜喷塔板418 4.6.2.1舌形塔板419 4.6.2.2斜孔塔板423 4.6.3V?0固阀428 4.6.4V?grid系列固阀428 4.6.5微型固阀429 4.7泡罩塔板429 4.7.1泡罩塔板的结构429 4.7.2塔板压降431 4.7.3负荷性能图432 4.8网孔塔板433 4.8.1概述433 4.8.2网孔塔板的结构与性能433 4.8.3塔径与板间距434 4.8.4板面布置435 4.8.5流体力学计算438 4.9垂直筛板441 4.9.1概述441 4.9.2CTST立体传质塔板的结构与特点441 4.9.3立体传质塔板的流体力学性能442 4.9.4立体传质塔板的传质性能446 4.9.5立体传质塔板的工程设计447 4.10无降液管塔板448 4.10.1概述448 4.10.2穿流式栅板或筛板的塔板结构448 4.10.3流体力学计算449 4.10.4穿流式波纹筛板450 4.11多降液管塔板454 4.11.1概述454 4.11.2MD塔板结构特点454 4.11.3流体力学性能455 4.11.4负荷性能图457 4.11.5主要设计参数458 4.12塔板结构设计――分块式塔板459 4.12.1分块式塔板结构型式459 4.12.2塔盘的分块460 4.12.2.1塔板分块460 4.12.2.2塔板分块示例462 4.12.3分块式塔板结构尺寸463 4.12.4塔板支持件结构465 4.12.4.1分块式塔板的降液管465 4.12.4.2分块式塔板的受液盘466 4.12.4.3分块式塔板的溢流堰468 4.12.5塔板紧固件468 4.12.6塔板结构设计的其它考虑473 4.12.6.1折流挡板473 4.12.6.2引流板473 4.12.6.3塔段结构改变时的降液管结构型式473 4.12.6.4排液孔(泪孔)474 4.13填料塔475 4.13.1填料塔的特点475 4.13.2填料塔的结构476 4.13.3塔填料的分类476 4.13.3.1散装填料477 4.13.3.2规整填料477 4.13.4填料的几何特性478 4.13.4.1散装填料单体及填料层的几何参数478 4.13.4.2规整填料层几何参数479 4.13.5填料塔的流体力学性能479 4.13.5.1填料塔的流体力学状态479 4.13.5.2填料塔的流体力学模型481 4.13.6填料塔的传质性能489 4.13.6.1定义489 4.13.6.2影响传质性能的因素490 4.13.6.3填料塔传质关联式与数据491 4.13.7填料塔的设计493 4.13.7.1塔的工艺模拟493 4.13.7.2填料的选择493 4.13.7.3塔径的确定496 4.13.7.4填料层高度的确定496 4.13.7.5压降计算497 4.13.7.6填料塔内件的设计497 4.13.8填料塔的气液分布与放大问题497 4.14散装填料的性能499 4.14.1散装填料的特点与应用场合499 4.14.2拉西环500 4.14.3鲍尔环500 4.14.4改进型鲍尔环503 4.14.5阶梯环与阶梯短环505 4.14.6扁环与梅花扁环填料507 4.14.7环鞍形填料509 4.14.8共轭环517 4.14.9茵派克填料521 4.14.10多鞍环填料522 4.15规整填料的性能525 4.15.1规整填料的特点与应用525 4.15.2金属孔板波纹填料525 4.15.2.1Mellapak填料525 4.15.2.2刺孔板波纹填料532 4.15.2.3Gempak填料534 4.15.2.4Intalox规整填料537 4.15.3非金属板波纹填料538 4.15.3.1塑料板波纹填料538 4.15.3.2陶瓷板波纹填料541 4.15.4网状波纹填料543 4.15.4.1概述543 4.15.4.2网状填料的特点与应用场合544 4.15.4.3金属丝网填料545 4.15.4.4塑料丝网波纹填料547 4.15.4.5金属板网(网孔)波纹填料548 4.15.4.6Rombopak填料549 4.15.5栅格填料551 4.15.5.1Glitsch栅格填料551 4.15.5.2Sulzer栅格填料553 4.15.6我国新开发的规整填料554 4.15.6.1波环填料554 4.15.6.2组片式波纹填料554 4.15.6.3板花填料555 4.15.7改进型孔板波纹填料555 4.16塔器选型导则556 4.16.1塔器选型主要考虑因素556 4.16.2判断气液传质设备最佳的目标557 4.16.3板式塔和填料塔的选型原则557 4.16.3.1板式塔和填料塔的传质机理557 4.16.3.2板式塔和填料塔的特性比较557 4.16.3.3优先选用填料塔的工况557 4.16.3.4优先选用板式塔的工况557 4.16.3.5综合选型558 4.16.4板式塔的选型导则558 4.16.4.1新塔的设计558 4.16.4.2旧塔的改造558 4.16.5填料塔的选型导则559 4.17塔的内件与辅助装置560 4.17.1概述560 4.17.2填料塔的液体分布器561 4.17.2.1对液体分布器的基本要求561 4.17.2.2液体分布器的类型和结构563 4.17.2.3槽式分布器564 4.17.2.4管式分布器568 4.17.2.5盘式分布器572 4.17.2.6喷射式分布器574 4.17.3填料塔液体收集及再分布装置574 4.17.3.1填料层的分段574 4.17.3.2液体收集器575 4.17.3.3液体再分布器575 4.17.4填料支承装置576 4.17.5填料压板和床?000118588 4.17.6气、液进出料管579 4.17.6.1液体进料结构579 4.17.6.2液体出料管582 4.17.6.3气体出、入管与气体分布器582 4.17.7除雾沫器586 4.17.7.1丝网除沫器586 4.17.7.2折流板除沫器587 4.17.7.3填料除沫器587 4.17.7.4旋流板除沫器588 4.17.8塔釜(底)结构588 4.17.9塔的辅助装置589 主要符号说明589 参考文献590 第5章膜分离 5.1概述595 5.1.1引言595 5.1.2膜分离技术的发展简史595 5.1.3膜分离过程的分类595 5.2膜分离过程及其应用597 5.2.1压力驱动膜过程597 5.2.1.1微孔过滤598 5.2.1.2超过滤602 5.2.1.3纳滤605 5.2.1.4反渗透609 5.2.1.5气体分离618 5.2.1.6膜萃取626 5.2.2浓差驱动膜过程630 5.2.2.1渗透蒸发630 5.2.2.2透析633 5.2.2.3液膜637 5.2.2.4膜吸收法645 5.2.3电驱动膜过程649 5.2.3.1电渗析649 5.2.3.2膜电解657 5.2.3.3双极膜电渗析661 5.2.4热驱动膜过程666 5.2.4.1膜蒸馏666 5.3浓差极化、膜污染及前处理673 5.3.1浓差极化673 5.3.1.1浓差极化形成的基本原因673 5.3.1.2浓差极化的危害677 5.3.1.3减小浓差极化的方法677 5.3.2膜污染681 5.3.2.1膜污染的定义681 5.3.2.2膜污染的起因682 5.3.2.3膜污染的控制方法683 5.3.2.4膜污染的清洗方法684 5.3.3前处理686 5.4膜材料及制膜工艺简介687 5.4.1膜材料687 5.4.2制膜工艺689 5.5膜组件及膜系统设计691 5.5.1前言691 5.5.2膜组件类型691 5.5.2.1板框式691 5.5.2.2圆管式694 5.5.2.3螺旋卷式701 5.5.2.4中空纤维式703 5.5.2.5各种膜组件形式的优缺点对比706 5.5.3膜分离系统的设计707 5.5.3.1反渗透过程708 5.5.3.2电渗析过程714 5.6集成膜分离技术720 5.6.1引言720 5.6.2几种典型的集成膜分离过程模式721 5.6.2.1膜分离与化学反应相结合721 5.6.2.2膜分离与蒸发单元操作相结合721 5.6.2.3膜分离与吸附单元操作相结合721 5.6.2.4膜分离与冷冻单元操作相结合721 5.6.2.5膜分离与催化单元操作相结合721 5.6.2.6膜分离与离子交换树脂单元操作相结合721 5.6.3集成膜分离过程的应用实例721 5.6.3.1用集成膜过程对含油废水进行资源化回收利用处理721 5.6.3.2集成膜工艺海水淡化与浓海水综合利用722 参考文献722 第6章干燥 6.1干燥过程的基本计算和湿空气性质及湿度图724 6.1.1干燥过程的基本计算724 6.1.2湿空气性质及湿度图724 6.2干燥器的分类和选择724 6.2.1干燥器的分类724 6.2.2干燥器的选择724 6.3对流传热干燥器729 6.3.1厢式干燥器729 6.3.1.1型式730 6.3.1.2设计参数730 6.3.2气流干燥器730 6.3.2.1气流干燥的操作原理和特点730 6.3.2.2气流干燥器的型式731 6.3.2.3气流干燥管有关参数的确定733 6.3.3流化床干燥器738 6.3.3.1操作原理及特点738 6.3.3.2单层和卧式多室流化床干燥器739 6.3.3.3振动流化床干燥器741 6.3.3.4带搅拌的移动流化床干燥器746 6.3.4旋转快速干燥机747 6.3.4.1操作原理、工艺流程和特点747 6.3.4.2主要操作参数748 6.3.4.3旋转快速干燥技术的应用749 6.3.5喷雾干燥750 6.3.5.1喷雾干燥的操作原理及流程750 6.3.5.2雾化器的结构和计算752 6.3.5.3喷雾干燥塔的结构设计和尺寸估算769 6.3.5.4喷雾干燥技术在工业上的应用举例781 6.3.6转筒干燥器786 6.3.6.1分类786 6.3.6.2工作原理和特点786 6.3.6.3直接加热式转筒干燥器787 6.3.6.4间接加热式791 6.3.6.5复合加热式792 6.3.6.6常规直接加热式转筒干燥器的设计参数793 6.4传导传热干燥器797 6.4.1真空耙式干燥器797 6.4.2双锥回转真空干燥机798 6.4.3滚筒干燥器798 6.4.3.1分类798 6.4.3.2操作原理799 6.4.3.3工艺流程799 6.4.3.4设计参数799 6.4.4振动流动干燥机801 6.4.4.1分类和操作原理801 6.4.4.2应用802 6.4.5旋转管束干燥机804 6.4.5.1结构及操作原理804 6.4.5.2干燥工艺流程804 6.4.6蒸汽管间接加热式回转圆筒干燥机805 6.5红外线干燥和微波干燥807 6.5.1红外线干燥807 6.5.1.1红外线干燥的基本原理和特点807 6.5.1.2红外线干燥器的组成和应用807 6.5.2微波干燥808 6.5.2.1微波干燥的基本原理808 6.5.2.2微波干燥的特点和应用809 6.5.2.3微波干燥系统的组成809 6.5.2.4微波干燥过程809 6.5.2.5几种常用的微波干燥器809 主要符号说明810 参考文献811 第7章化学反应器 7.1气?固固定床催化反应器813 7.1.1气?固固定床催化反应器类型813 7.1.1.1绝热式反应器813 7.1.1.2换热式反应器813 7.1.1.3工业气?固固定床催化反应器813 7.1.2固定床反应器数学模型814 7.1.2.1固定床反应器的基础数据814 7.1.2.2气?固固定床催化反应器的数学模型817 7.1.3气?固固定床催化反应器选型及设计821 7.1.3.1气?固固定床催化反应器选型的基本原则821 7.1.3.2气?固固定床催化反应器的过程开发821 7.1.3.3绝热固定床反应器的设计822 7.1.3.4换热式固定床反应器的设计824 7.1.4固定床反应器中几个工程问题825 7.1.4.1参数灵敏度825 7.1.4.2温度检测826 7.1.4.3固定床反应器的控制827 7.1.4.4流体均布827 7.1.4.5设计中考虑的其它因素828 7.2气?液反应器829 7.2.1气?液反应器的分类及其基本特征829 7.2.1.1反应器中的气液两相接触形式829 7.2.1.2气?液反应器的基本类型829 7.2.1.3常见的气液反应器的特点830 7.2.2气?液反应器的选择831 7.2.2.1气?液反应过程的宏观反应速率方程831 7.2.2.2物理传质系数和界面积的估算835 7.2.2.3气?液反应器的选择原则837 7.2.3气?液反应器的设计838 7.2.3.1填料塔反应器838 7.2.3.2鼓泡塔反应器839 7.3搅拌槽式聚合反应器的设计847 7.3.1搅拌设备概论847 7.3.1.1槽体848 7.3.1.2叶轮848 7.3.1.3内构件849 7.3.2搅拌槽式聚合反应器的选型854 7.3.2.1搅拌对象的性质854 7.3.2.2叶轮的剪切?循环特性857 7.3.2.3流动状态与叶轮性能的关系859 7.3.2.4几种常用叶轮的特性861 7.3.2.5搅拌槽式聚合反应器的进展864 7.3.3聚合反应器中的流动867 7.3.3.1湍流域用搅拌叶轮的流场868 7.3.3.2由流速分布计算叶轮排量数和循环量数868 7.3.3.3操作条件和流体的流变行为对流型的影响871 7.3.3.4从流场信息优化搅拌叶轮设计和操作873 7.3.4搅拌设备的功耗、排量和混合878 7.3.4.1搅拌功率878 7.3.4.2排量、循环量和混合的关系889 7.3.5搅拌槽的传热893 7.3.5.1概述893 7.3.5.2热载体侧的表面传热系数895 7.3.5.3被搅液侧的表面传热系数897 7.3.5.4高黏流体的刮壁式传热906 7.3.6固?液搅拌槽式反应器中的非均相混合910 7.3.6.1固?液悬浮910 7.3.6.2液?液分散919 7.3.6.3气?液分散925 7.3.7搅拌槽的放大技术936 7.3.7.1概述936 7.3.7.2几何相似放大法936 7.3.7.3非几何相似放大法941 7.3.7.4关于数学模型放大944 7.3.8悬浮聚合和乳液聚合反应器946 7.3.8.1悬浮聚合的成粒机理947 7.3.8.2氯乙烯悬浮聚合反应器954 7.3.8.3乳液聚合反应器965 7.3.9溶液聚合和均相本体聚合反应器970 7.3.9.1高黏流体聚合反应器的选型971 7.3.9.2苯乙烯本体聚合装置973 7.3.10烯烃聚合反应器982 7.3.10.1三种聚烯烃工艺简述982 7.3.10.2搅拌釜式烯烃聚合反应器985 7.4气?固流化床反应器993 7.4.1基本类型及其特点993 7.4.2工业应用995 7.4.2.1各类反应过程995 7.4.2.2工业应用的例子995 7.4.3流化床的流体力学特性997 7.4.3.1颗粒的分类及其对流态化的影响997 7.4.3.2流域和流域的过渡998 7.4.3.3流化状态的识别1000 7.4.3.4鼓泡流态化1000 7.4.3.5重要参数及其计算1001 7.4.3.6流化床床层的膨胀1006 7.4.4流化床中的热量和质量传递1008 7.4.4.1流化床中的热量传递1008 7.4.4.2流化床中的质量传递1011 7.4.5流化床反应器的数学模型1012 7.4.5.1鼓泡区的相际质量传递1013 7.4.5.2流化床反应器模型1014 7.4.6过程的开发和放大1021 7.4.7工程设计原则1023 7.4.7.1催化剂用量1023 7.4.7.2流化床床层壳体的确定1024 7.4.7.3流化床内部装置的设计1025 7.4.7.4气?固分离装置的设计和其它1029 7.5气?液?固三相反应器1029 7.5.1引言1029 7.5.2气?液?固三相反应过程的宏观动力学1030 7.5.2.1固相为催化剂,不参与反应1030 7.5.2.2固体颗粒参与反应1031 7.5.3滴流床三相反应器1032 7.5.3.1流体力学1032 7.5.3.2压降1033 7.5.3.3持液量1034 7.5.3.4液体分布1035 7.5.3.5轴向分散(或返混)1036 7.5.3.6滴流床的传质1036 7.5.3.7滴流床的传热1037 7.5.4鼓泡悬浮三相反应器1038 7.5.5气?液?固三相流化床1041 7.6沸腾床反应器1044 7.6.1概述1044 7.6.2沸腾床反应器结构1046 7.6.3沸腾床渣油加氢工艺1046 7.6.3.1H?Oil工艺1046 7.6.3.2T?Star工艺1047 7.6.3.3LC?Fining工艺1048 7.6.4流体力学1049 7.6.4.1气泡特性1049 7.6.4.2液相流动特性1053 7.6.4.3固含率分布1055 7.6.5数学模型化1057 7.6.6催化剂在线置换模拟1058 7.6.6.1催化剂失活反应动力学1058 7.6.6.2催化剂在线置换的计算机模拟1061 7.7移动床催化反应器1062 7.7.1概述1062 7.7.2移动床反应器的分类1063 7.7.3移动床反应器的特点1063 7.7.4移动床反应器的模拟1064 7.7.5移动床反应器设计1064 7.7.5.1贴壁和空腔的计算1064 主要符号说明1074 参考文献1081 附录常用单位换算
(孔板流量计跳字是什么原因)

了解更多关于:沈阳矿用孔板流量计,孔板流量计为什么要用配电器配电,sis孔板流量计冗余问题,孔板流量计的原理,孔板流量计一次原件是哪部分,丹尼尔孔板流量计,孔板流量计前后压力变化,罗斯蒙特孔板流量计说明书,标准孔板流量计简介,孔板流量计理论,孔板流量计的原理和结构,孔板流量计 像三通一样,节流孔板流量计用途,法兰取压孔板流量计厂家供应,有一孔板流量计,孔板流量计密度和流量的关系,孔板流量计发展史,重庆川仪eja煤气管道配套孔板流量计差压变送器,蒸汽孔板流量计算,孔板流量计的图纸表示方法
本文摘自:http://www.oen1718.com 转载请注明出处