全国免费咨询热线4000-188-588

TEL:029-88643194 FAX:029-88611928

压差表怎么填写

本文章主要介绍了:压差表怎么填写,压差表的原理及作用,差压表哪里是高压端,压差表怎么填写等信息

精度:满量程精度为±2%(-HA型号±1%)(±3%(-HA±1.5%)on-0,-100PA-125PA,-10MMand±4%(-HA±2%)on-00,-60PA,-6MMranges),70°F(21.1°C).
耐压:-20inHgto15psig(-0.677to1.034bar);MP选项:35psig(2.41bar);
HP选项:80psig(5.52bar).
-防护等级:IP67.
-过压保护:对于标准型号,大约在25psig(1.72bar),时,泄压塞打开。
温度限制:20to140°F*(-6.67to60°C).低温选项-20°F(-28°C)
尺寸:表盘直径为4?(101.6mm)
安装定位:膜片用于垂直方向。其他安装位置,请咨询工厂。
过程连接:2组1/8?内螺纹NPT高、低压接口-一组在侧面,一组在背部
(压差表怎么填写)

【导读】简单地讲,压差表就是一种测量的仪器,它主要是测量空气对应的微压差,这个仪器应用范围比较广泛。我们可以看到一些制药与微电子这些产业都会使用这类仪表,因为这些行业对于环境的微压差相关数值都是需要的。压差表的使用可以有很多种,常见的就是嵌入式,还有悬挂式。安装的部位一般是在洁净室的墙体外侧,本身这类仪器不需要电源而且相应的灵敏度高,对应的测量精度也是比较高的。那么我们知道了压差表的用途,压差表安装是怎样的呢?我们需要注意哪些问题呢?下面小编就来详细的介绍一下。
压差表安装步骤
对于压差表的安装是需要依照一定的顺序进行安装的,不能随意的进行安装,这样容易导致安装好的压差表不能使用。详细的安装操作步骤如下:
(压差表怎么填写)

正在集中供热范畴,插卡差压表的应用十分普遍,无论是户用还是管网用,本文首先针对户用插卡差压表,为各人扼要的引见一下它的功用、安拆以及长处。家用插卡差压表几钱一个?
9、接线顺序(差压控造表):1—电源正,2—电源负,3—控造点公共端,4—控造点常闭端,5—控造点常初步;
10、电源(差压控造表):请选择DC24V的电源。在入冬的季节到来之前我们就要把远传差压表的内部进行的清扫工作,如果有什么问题的话还要合理的维修。
11、工业型防过压庇护差压表的内部设有过压庇护和反压冲击庇护,制止管道中差压值过高使仪表损坏,还可庇护管道冲击压力发生的压力不服衡,使仪表指针反打的现象。由于国内一些城市与地区和一部分用自备水源的通水管网的材质和水暖器材较差、屋顶水箱有二次污染等情况,导致终流过差压表的水含有一些杂质,不够清洁,影响了差压表的计量性能和正常工作,导致误差加大。
(压差表怎么填写)

泊头长袋低压脉冲除尘器哪家强
处理高含尘量时,在构造上应尽量使粉尘直接落入灰斗或加些挡板,以减少附着于除尘器布袋上的粉尘量;防止滤布的摩擦损坏,不应使高速运动的粉尘直接冲击滤布。也可以以箱体中间一部分作为预除尘器,并兼作粉尘的动力沉降室和入口气体的分流室。2、布袋除尘器处理含焦油雾的含尘气体处理仅含有焦油雾的气体是困难的,但是,气体中油雾不大而含粉尘量相当多时可以直接过滤。例如,在沥青混凝土厂,以石料干燥机的烟气为主,加上运输机和其他排气中的粉尘都进入了设备,此外。在拌合机和卸成品料处。由加热后的沥青混凝土产生的焦油雾也都进入了设备。在这种情况下,滤布上积附的粉尘量远远超过油雾量,就可以防止发生油雾黏结的麻烦,保证了稳定运转。
(压差表怎么填写)

TEA700方形压力表微压差表露天区该产品由臻林自动化仪表(上海)有限公司生产直销TEA700方形压力表微压差表露天区LSP52LSP75UHZ58/SFYKTEA700红油/液体压差计/表
红油差压计(室内外压差计)用于测量药厂、电子厂洁净室洁净厂房的正负压差,暖通空调,净化空调,净化台风淋室专用表,洁净空调过滤网压差的检测等。
红油差压计测量范围为-10~700Pa,适用用于洁净室或相邻隔间有压差的房间,把压差表垂直安装在墙面上可嵌入式安装与墙面平行,也可直接固定在墙面上。安装时应注意不应离回风口、排风口或送风口太近的位置,以免造成指示误差。压差表上有HIGH(高压口)和LOW(低压口),通常把压差表放置于相对高压的房间。
(压差表怎么填写)

第二章名词解释本文中蓝色标注的是巡检人员必须掌握的题目1、火力发电厂fossilfiredpowerplant;thermalpowerplant利用化石燃料燃烧释放的热能进行发电的动力设施,包括燃料燃烧释热和热能电能转换以及电能输出的所有设备、装置、仪表器件,以及为此目的设置在特定场所的建筑物、构筑物和所有有关生产和生活的附属设施。2、锅炉boiler利用燃料燃烧释放的热能或其它热能加热给水或其它工质以生产规定参数和品质的蒸汽、热水或其他工质蒸气的机械设备。用于发电的锅炉称电站锅炉。在电站锅炉中,通常将化石燃料煤、石油、天然气等燃烧释放的热能,通过受热面的金属壁面传给其中的工质水,把水加热成具有一定压力和温度的蒸汽,所产生的蒸汽则用来驱动汽轮机,把热能转换为机械能,汽轮机再驱动发电机,将机械能变为电能供给用户。电站锅炉又称为蒸汽发生器。3、热力学thermodynamics研究各种能量特别是热能的性质及其相互转换规律,以及与物质性质之间的关系的学科,是物理学的一个分支。热力学着重研究物质的平衡状态以及与平衡状态偏离不大的物理、化学过程,近代已扩大到对非平衡态过程的研究。4、工质实现热能和机械能相互转化的媒介物质,叫做工质。为了获得更多的功,要求工质有良好的膨胀性和流动性、价廉、易得、热力性能稳定、对设备无腐蚀作用,而水蒸汽具有这种性能,发电厂常采用水蒸汽作为工质。5、状态参数凡能够表示工质状态特性的物理量,就叫做状态参数。例如温度T、压力p、比容ひ、内能u、焓h、熵s等,我们常用的就是这六个,还有火用、火无等状态参数。状态参数不同于我们平时所说的如流量、容积等“参数”,它是指表示工质状态特性的物理量,所以,要注意区别状态参数的概念,不能混同于习惯的“参数”。6、压力单位面积上承受的垂直作用力,又称压强。压力是一种强度量,其数值与系统的大小无关,通常以符号P表示,单位是帕Pa。压力有绝对压力、大气压力、正压力工程上称为表压力、负压力工程上称为真空和压差等不同的表述形式。7、比容单位质量物质所占有的容积.以符号V表示。比容是一个强度量,其值与系统的大小无关,单位是米3/千克m3/kg。热力学中常用的另一个物理量密度ρ,是比容的倒数,即单位容积的物质所具有的质量。8、温度表示物体冷热程度的物理量。根据热力学第零定律,温度是衡量一个热力系与其他热力系是否处于热平衡的标志。一切具有相同温度的系统均处于热平衡状态;反之,即处于非平衡状态。温度是一个强度量,数值与系统的大小无关。温度的分度表示方法称为温度标尺或简称温标。中国法定的温度标尺采用国际单位制中的热力学温标,也就是开尔文温标或绝对温标,用符号T表示,单位是开尔文K。曾经使用过的温标尚有摄氏温标t℃、华氏温标t(F)等。9、内能蓄积于热力系内部的能量。内能是一个广延量,其数值与质量成正比,以符号U表示,单位是焦J。单位质量的内能称为比内能,以u表示,单位是焦/千克J/kg。从微观的角度来理解,内能包括组成系统大量分子的动能、位能、化学能和原子核能等。在不涉及化学变化和核反应的物理过程中,化学能与核能可以不加考虑,此时热力系中的内能只涉及分子动能和位能。理想气体的内能与压力无关,只是温度的函数。10、焓热力系所拥有的内能U和压力势能PV的总和。焓是一个广延量,以符号H表示,单位是焦J。单位质量物质的焓称为比焓,以h表示.单位是焦/千克J/kg。11、熵entropy熵无简单的物理意义,不能用仪表测量,其定义熵的微小变化等于过程中加入微小热量dq与加热时绝对温度T之比。熵的微小变化标志着过程中有热量交换及热量传递方向,dS<0,热力系吸热,热量为负值;dS>0,热力系放热,热量为正;dS0,则热力系与外界无热交换。dSdq/T,dqdsT。熵增原理孤立系统的熵可以增大(发生不可逆过程时),可以不变(发生可逆过程),但不可以减少。系统的熵增与作功能力的关系由不等温传热过程分析可知热源与工质之间不等温传热而引起系统熵增,而系统中作功能力的损失等于系统中的熵增乘以冷源温度。不可逆传热的发生,使得系统的熵增加,就意味着作功能力的损失增加,也就使得向冷源排出的无效能增加了。而作功能力的损失与熵增成正比,故系统中的熵的增量可作为不可逆过程的度量。在实际的热动力装置中工质携带的热量一定时,则温度高时作功能力强,这种高温热量就越有用。锅炉内温差传热的熵增最大,所以作功能力损失最大(高温烟气传热给炉水、蒸汽)。熵的外文原意是转变,指热量转变为功的能力。中文译名“熵”是由刘仙洲教授命名的。12、火用(rgy)在给定的环境条件下能量中理论上可以最大限度转换为机械能的那部分能量,又称可用能或有效能availability,用符号E表示.单位为焦J。单位质量的火用称为比火用,用符号e表示,单位为焦/千克(J/kg)。对应于热力学系统与环境之间不平衡的情况,能量中的火用可以分为物理火用和化学火用。焓减去火用就是无用的那部分能量叫火无。13、平衡状态工质的各部分具有相等的压力、温度、比容等状态参数时,就称工质处于平衡状态。14、理想气体idealgas一种理想化的气体,这种气体分子间没有作用力,而且分子的大小可以忽略不计如同几何点一样。实际上理想气体是不存在的,不过在平常温度和压力下,许多简单气体,如氢、氮、氧等可以视为理想气体,因为气体在此条件下其分于彼此远离,分于间相互作用力微弱,可看作为零,又分子间平均距离远大于分子直径,故分子可视为不具有体积的质点。15、比热specificheat单位数量的气体温度升高(或降低)1℃时,所吸收(或)放出的热量,称为气体的单位热容量,或称为气体的比热。以符号c表示,比热的单位是焦/千克开[J/kgK],是工质的一种热力性质。比热的概念最早由苏格兰化学家J。布莱克于18世纪提出的。16、汽化物质从液态转变为汽态的过程。包括蒸发、沸腾。蒸发是在液体表面进行的汽化现象。17、沸腾在液体内部进行的汽化现象。在一定压力下,沸腾只能在固定温度下进行,该温度称为沸点。压力升高沸点升高。18、饱和蒸汽容器上部空间蒸汽分子总数不再变化,达到动态平衡,这种状态称为饱和状态,饱和状态下的蒸汽称为饱和蒸汽;饱和状态下的水称为饱和水;这时蒸汽和水的温度称为饱和温度,对应压力称为饱和压力。19、湿饱和汽饱和水和饱和汽的混合物。20、干饱和汽不含水分的饱和蒸汽。21、过热蒸汽蒸汽的温度高于相应压力下饱和温度,该蒸汽称为过热蒸汽。22、过热度过热蒸汽的温度超出该蒸汽压力下对应的饱和温度的数值,称为过热度。23、汽化潜热把1Kg饱和水变成1Kg饱和蒸汽所需要的热量,称为汽化潜热或汽化热。24、干度湿蒸汽中含有干饱和蒸汽的质量百分数。25、湿度湿蒸汽中含有饱和水的质量百分数。26、临界点随着压力的升高,饱和水和干饱和蒸汽差别越来越小,当压力升到某一数值时22.115MPa,饱和水和干饱和蒸汽没有差别,具有相同的状态参数,该点称为临界点。水的临界温度为374.15℃,临界压力为22.115MPa。27、定容过程定容过程的气体压力与绝对温度成正比,即P1/T1P2/T2。在定容过程中,所有加入气体的热量全部用于增加气体的内能。因容积不变,没有作功。如内燃机工作时,气缸里被压缩的汽油和空气的混合物被点燃后突然燃烧,瞬间气体的压力、温度突然升高很多,活塞还来不及动作,这一过程可认为是定容过程。28、定压过程在压力不变的情况下进行的过程,叫做定压过程。如水在锅炉中的汽化、蒸汽在凝汽器中的凝结。定压过程中比容与温度成正比即ひ1/T1ひ2/T2温度降低气体被压缩,比容减小;温度升高,气体膨胀,比容增大。定压过程中热量等于终、始状态的焓差。其T-S曲线为斜率为正的对数曲线。29、定温过程在温度不变的条件下进行的过程。P1ひ1P2ひ2常数,即过程中加入的热量全部对外膨胀作功;对气体作的功全部变为热量向外放出。30、绝热过程在与外界没有热交换的情况下进行的过程,称为绝热过程。又叫等熵过程。汽轮机、燃气轮机等热机,为了减少热损失,外面都包了保温材料,而且工质所进行的膨胀极快,在极短的时间内还来不及对外散热,即近似绝热膨胀过程。31、热力系统therma1powersystem;steam/waterflowsystem实现热力循环热功转换的装置系统。各有关热力设备,按照生产过程中特定作用和功能,通过管道连接、组合构成的工作整体。32、热力学系统thermodynamicsystem热力学研究中作为分析对象所选取的某特定范围内的物质或空间,简称热力系。在特定场合下也简称系统。热力系以外的物质或空间统称为环境或外界。环境只相对于该热力系而言,环境中的某一部分同样可以划出来组成另一个热力系。热力系与环境之间的界限称为分界面热力系边界。热力系与环境间的任何物质或能量交换,都体现在热力系的边界上。分界面可以是真实的或假想的,固定的或移动的。33、热力循环thermodynamiccycle工质从一个热力状态出发,经过一系列的变化,最后又回到原来的热力状态所完成的封闭的热力过程。34、正循环一个热力循环如果其净功为正,也就是说,如果其总的效果是从热源吸收了热量,并对外作了功,则称该循环为正循环。35、反循环一个热力循环如果其净功为负,也就是说,如果其总的效果是消耗了外功并向热源放出了热量,则称该循环为逆循环,如空调机的制冷过程。36、可逆循环若组成循环的过程全部可逆,称为可逆循环。37、不可逆循环若组成循环的任一过程是不可逆的,称为不可逆循环。38、热力学第零定律zerothlawofthermodynamics热力学中以热力学系统的热平衡为基础建立温度概念的定律。通常表述为两个系统每个均与第三个系统处于热平衡,则这两个系统彼此也必处于热平衡。因为这个事实首先由C.麦克斯韦ClarkMicswell规定为一个经验定律时,是在热力学第一定律建立之后,所以叫做热力学第零定律。第零定律表明,每个系统本身存在着一个衡量它们是否互相热平衡的宏观属性温度。它只与系统的状态有关,是系统的一个状态参数。根据第零定律可以建立温度计测温。39、热力学第一定律first1awofthermodynamics热力学的基本定律之一,是能量守恒原理的一种表述形式。表述为一种能量可以在热力学系统与环境之间进行传递,也可以与其他形式的能量相互转换,在传递与转换过程中能量的总值守恒不变,不会自行增加或减少。另一种表述是不消耗能量就可以作功的第一类永动机是不可能实现的。它推广了力学领域的能量形式,把热能、内能与机械能等多种形式的能量都联系起来了。40、热力学第二定律secondlawofthermodynamics热力学的基本定律之一,通常表述为,热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体;也可表述为两物体互相摩擦的结果使功转换为热,然而不可能将这摩擦热再转换为功,并且不产生其他影响。热力学第二定律是对热力学第一定律的重要补充。41、卡诺循环Carnotcycle在一个高温热源和一个低温热源之间,由四个完全可逆的热力过程-等温吸热、等熵膨胀、等温放热和等熵压缩,所组成的热力循环。历史上是热力学第二定律的体现。由法国S.卡诺SadiCarnot于1824年提出,是一种理想的热力循环。没有任何能量损失的理想循环。42、卡诺定理表述为①在两个恒温热源之间工作的热机,它的效率不能超过卡诺热机的效率,②在两个恒温热源之间工作的所有卡诺热机,它们的效率都相等。43、热力学第三定律thirdlawofthermodynamics热力学的基本定律之一,反映绝对零度及其邻近区域热现象的规律性,通常表述为无论用什么方法,靠有限步骤不可能使物体的温度达到绝对零度。1906年德国化学家W.能斯脱WalterNernst首先提出“热定理”,后经F.E.西蒙(FranzEugenSimon)等人的发展,成为热力学第三定律的能斯脱西蒙表述当热力学温度趋于零时,凝聚系统在可逆等温过程中熵的改变随之趋于零。44、朗肯循环蒸汽动力装置的基本循环,工质在锅炉、汽轮机、凝汽器、给水泵等热力设备中进行吸热、膨胀、放热、压缩四个过程使热能不断地转变为机械能,这种循环称为朗肯循环。45、传热学heattransfer研究热量传递规律的学科。传热是自然界和工程实践中普遍存在的现象之一。热力学第二定律指出,热量总是自发地由高温传向低温,传热学正是研究这现象的一门科学。基本传热方式有三种热传导、热对流和热辐射。46、热传导heatconduction温度不同的物体各部分之间或温度不同的两物体间由于直接接触而发生的热传递现象,也称导热。热传导是从宏观角度进行现象分析的,即把物质看作是连续介质,各部分之间没有相对位移。热传导是热量传递的三种基本方式之一,对导热规律的研究是传热学的重要组成部分。导热理论的任务就是要找出任何时刻物体内各处的温度,即温度场,或各处的热流通量〔热流密度〕。47、傅里叶定律FourierLaw导热的基本定律,表述为在任何时刻连续均匀的各向同性介质中,各点就地传递的热流通量矢量q正比于当地的温度梯度,即q=-λgradΤ式中λ是介质的热导率;gradT是温度梯度;负号表示热流通量矢量和温度梯度矢量共线但反向,都垂直于通过该点的等温面,即热流通量矢量朝着温度降低方向。它与热力学第二定律相符合。48、导热系数λ衡量物体导热能力的一个指标,其大小表示导热(隔热)性能的好坏。均由试验确定。在工程设计中,导热系数是合理选用材料的依据。49、导温系数a影响不稳定导热过程的物理量,其数值大小表示物体传播温度变化的能力。它正比于物体的导热能力,反比于物体的蓄热能力。导温系数大材料在不稳定导热过程中温度变化快,达到温度均匀的时间短。否则,相反。导热系数与导温系数是两个既有区别又有联系的概念。导热系数仅指材料的导热能力,反映热流量的大小,而导温系数则综合考虑了材料的导热能力和升温所需热量的多少,反映温度变化的快慢。稳定导热过程导温系数无意义,只有导热系数对过程影响;不稳定导热过程由于不断地吸热或放热,导温系数决定物体的温度分布。50、对流换热heattransferbyconvection;convectiveheattransfer流体与温度不同的物体表面直接接触而产生的热量传递过程。它是热传导与热对流这两种基本传热方式综合作用的结果,也称对流放热。51、热阻thermalresistance热传导、对流换热和辐射换热过程中由温度差和辐射力差形成的传热推动力与热流量或热流通量的比值,是一个综合反映阻止热量传递能力的参量。52、受迫运动由外部机械力所引起的流体运动叫流体的受迫运动。53、自由运动由于流体各部分密度不同而引起的运动叫流体的自由运动。54、层流当流体的流动速度很小时,流体各质点都与管的轴线方向平行流动,流体各部分互不干扰,这种流动状态叫层流。55、紊流如果流体的流速逐渐增大,当增大到某一临界值时,就会发现流体各部分相互掺混,甚至有旋涡出现,这种流动状态叫紊流。56、管内沸腾换热boilingheattransferintubes沸腾介质液体在外力压力差作用下沿管道受迫运动,同时受热沸腾,属于流动沸腾换热。如果管内介质不流动,除非管内径尺寸很小、与产生的汽泡尺寸很接近这一特殊情况,一般可按池内沸腾换热处理。57、膜态沸腾fi1mboiling在一定条件下,亚临界压力锅炉的蒸发受热面中水或汽水混合物与管壁间被一层汽膜隔开,导致传热系数急剧下降,管壁温度急剧升高,甚至出现过烧的现象。膜态沸腾又称传热恶化,按机理分为第一和第二两大类。58、辐射换热radiationheattransfer两个互不接触且温度不相等的物体或介质之间通过电磁波进行的热交换过程,是传热学研究的重要课题之一。辐射是以电磁波形式发射和吸收能量的传输过程。各种电磁波都以与光速相同的速度在空间传播,但是不同波长或频率的电磁波的性质是不相同的。59、辐射角系数radiativeang1efactors辐射换热时一个表面发射的能量中能直接达到另一表面的份额,简称角系数,以符号Fa-b表示。下角标ab表示辐射能将由表面a投射到表面b。它和所研究的两个物体的几何形状和相对位置直接相关,是计算表面辐射换热不可缺少的一个无因次量。60、辐射选择性selectivityofradiation气体通过增添或释放贮存在分子内部的某种能量而选择性地吸收或辐射某些特定波长范围内的辐射能的性能.是气体所独具的辐射特性之一。61、黑度blackness物体的实际辐射力与同温度下绝对黑体简称黑体的辐射力之比值,又称发射率。它反映物体表面所固有的在辐射能力方面接近黑体的程度,是辐射换热中的重要参数。62、红外线检测infraredinspection采用测量红外辐射的办法,检测构件表面温度或温度分布,以确定其运行状态是否存在内部缺陷的无损检测技术。红外线是一种电磁波。构件表面都辐射红外线,其功率与温度的四次方成正比。当构件存在缺陷时,无论其本身具有热源,或另外加热如用电流、等离子枪、火焰喷射枪、红外灯等、冷却都会导致温度分布异常。63、绝对黑体吸收率等于1的物体。64、辐射的四次方定律绝对黑体辐射力的大小与其绝对温度的四次方成正比。EoCo(T/100)4Co绝对黑体的辐射系数65、水循环boilercirculation水及汽水混合物在炉膛水冷壁内的循环流动。给水经省煤器进入汽包后,经由下降管和联箱分配给水冷壁,水在水冷壁内受热产生蒸汽,形成汽水混合物又回到汽包;分离蒸汽后的锅水又经下降管和联箱进入水冷壁继续循环流动。水循环不畅会导致水冷壁超温爆管,所以正常的水循环是锅炉可靠运行的重要条件之一。66、循环流速相应于工质流量下,按管子截面计算的饱和水的速度。自然循环锅炉的循环流速与压力有关。67、质量流速流过管子单位流通截面的工质流量,单位为kg/m2.s。亚临界压力下,为避免传热恶化,应按热负荷确定允许最小质量流速。68、循环倍率进入下降管的循环水量与其出口处蒸汽量之比。高中压锅炉受水冷壁积盐限制,循环倍率必须足够大。循环倍率与循环系统结构、上升管受热强度有关。在下降管与上升管截面比、结构一定条件下,热负荷增大,开始时循环流速随之增高,循环倍率也增大,表现出自补偿能力;但到一定程度时,热负荷再增大,则循环流速增加缓慢甚至不再增大,循环倍率不再增大,失去自补偿能力,如热负荷再增大,循环倍率反而减小,不再增大的循环倍率称界限循环倍率。直流锅炉设计的循环倍率为1。循环水系统循环倍率的概念不同于锅炉的循环倍率概念,循环水系统循环倍率是指循环水量与进入凝汽器的排汽量之比。我厂循环水系统设计的循环倍率是50。69、水蒸汽steam由水汽化或冰升华而成的气态物质。70、饱和状态将一定量的水置于一密闭的耐压容器中,然后将留在容器内的空气抽尽,此时水分子就从水中逸出,经一定时间后水蒸气就充满整个水面的上方空间。在一定温度下此水蒸气的压力会自动地稳定在某一数值上,此时,脱离水面的分子数和返回水面的分子数相同,即达到动平衡状态,也就是水和水蒸气处于饱和状态。饱和状态下的水和蒸汽分别称为饱和水和饱和蒸汽。饱和蒸汽的压力称为饱和压力,此状态下所对应的的温度称饱和温度。饱和压力和饱和温度之间有一定的对应关系。71、钢铁基本组织fundamentalmicrostructureofsteel钢铁中基本显微组织类型包括奥氏体、铁素体、珠光体、贝氏体、马氏体和碳化物等。其中奥氏体、铁素体和马氏体属固溶体两种或两种以上组元在液态时互相溶解,在固态时也互相溶解而成单一均匀的相,按溶入元素原子位置不同分为置换式、间隙式和缺位式等三种固溶体,奥氏体、铁素体和马氏体均属间隙固溶体,珠光体和贝氏体属机械混合物两种组元在固态时互不溶解,又不形成化合物,有各自晶格和性能的相的混合,碳化物属化合物以一定原子数比例相互结合,可用一简单化学式表示的物质。钢中渗碳体即为铁碳化合物。72、奥氏体碳或其他合金元素溶入γ铁中形成的固溶体。为面心立方晶格,无磁性,有良好的塑性和韧性。一般钢中奥氏体存在于高温下。钢淬火后有部分奥氏体残留到室温,称为残余奥氏体。合金钢中加入扩大γ区的合金元素如Ni、Mn等,可使奥氏体能保持到室温以下,称奥氏体钢。73、铁素体碳或其他合金元素溶入α铁形成的固溶体。为体心立方晶格,塑性和韧性较好。铁素体为低、中碳钢及低合金钢的主要显微组织。一般情况下,随铁素体量增加,钢的塑性、韧性上升,强度下降。钢中加入缩小γ区合金元素,如Si、Ti、Cr等,可得到高温常温都是铁素体组织,称铁素体钢。74、珠光体由铁素体和渗碳体组成的机械混合物。通常为片层状结构。乃奥氏体在A1温度以下发生共析转变的产物,有较高的强度和硬度。中碳钢和低合金钢的强度和塑性取决于珠光体的数量及片层间距,片层间距越小强度越高。随着珠光体转变温度的降低可分别形成粗片状珠光体、细片状珠光体、索氏体、屈氏体。它们都属于珠光体组织,只是片层间距不同。75、贝氏体过饱和铁素体和渗碳体的两相混合物,属不平衡组织。钢中贝氏体形态取决于转变温度和合金元素,有上贝氏体、下贝氏体、粒状贝氏体和无碳贝氏体。上贝氏体羽毛状,由平行的条状铁素体和分布在条间片状或短杆状并平行于铁素体的渗碳体所组成。铁素体内位错密度高,即强度高,但韧性较差。下贝氏体过饱和铁素体呈针片状,针片间成一定角度分布,其内部析出许多均匀细小的碳化物。下贝氏体中过饱和的铁素体具有高密度位错胞亚结构,均匀分布着弥散的碳化物,所以强度高、耐磨性好。76、马氏体碳的过饱和固溶体。为体心立方晶格,是过冷奥氏体非扩散性相变的产物。钢中马氏体形态随碳含量而异。低碳马氏体为条状,平行成束地分布,在金相显微镜下呈板条状。低碳马氏体韧性相当好,强度和硬度也足够高。高碳马氏体为片状马氏体。片状马氏体总是互相成一定角度分布。低温回火后马氏体变成黑色,残余奥氏体仍为白色。片状马氏体亚结构主要为精细孪晶,并且具有很高硬度。77、合金钢alloysteel为改善钢的某些性能,在碳素钢的基础上,加入适量合金元素的铁碳合金。合金钢在力学、物理、化学、耐热及某些工艺性能等方面的性能优于碳素钢。78、碳素钢carbonstee1含碳量少于1.35%并含有限量的锰、硅、磷、硫等杂质和微量残存元素的铁碳合金。碳含量是决定碳素钢性能和用途的主要因素。火电厂中工作温度不超过450℃的构件广泛使用碳素钢。碳素钢按化学成分可分为低碳钢、中碳钢、高碳钢;按钢的品质分为普通碳素钢、优质碳素钢和高级优质碳素钢;按用途分为碳素结构钢和碳素工具钢等。79、耐热钢heatresistantsteel在高温下既有足够的高温强度,良好的抗氧化性和抗腐蚀性,又有长期组织性质稳定性的钢的总称。耐热钢主要是一些加入铬Cr、硅Si、铝A1、钼Mo、钒V、钨W、铌Nb、钛Ti、硼B及稀土Re等合金元素的合金钢。80、金属热处理heattreatmentofmetal利用固态金属相变规律,采用加热、保温、冷却的方法,以改善并控制金属所需组织与性能物理、化学及力学性能等的技术。金属热处理按加热和冷却的不同可分为退火、正火、淬火、回火、调质等。在热处理工艺中最重要的是工艺参数的选择和热处理缺陷的防止等81、退火annealing将金属构件加热到高于或低于临界点,保持一定时间,随后缓慢冷却,从而获得接近平衡状态的组织与性能的一种金属热处理工艺。目的是使材料软化,增加塑性、韧性,使化学成分均匀化,去除残余应力或得到预期的物理性能等。82、正火normalizing将钢件加热到上临界点以上40-60℃或更高的温度,保温达到完全奥氏体化后,在空气中冷却的一种简便经济的热处理工艺。俗称常化。其主要目的是细化晶粒以改善钢的力学性能,并可作最终热处理用。它还可用于改善组织以改善钢的切削加工性能。83、淬火hardennine;quenching把钢加热到奥氏体化温度并保持一定时间,然后以大于临界冷却速度冷却,以获得非扩散型转变组织,如马氏体、贝氏体和奥氏体等的一种热处理工艺,俗称蘸火。其目的通常是提高钢的强度和硬度。淬火工艺包括淬火温度的选择、加热时间的确定和冷却介质的选择三个方面。要求是既能达到所要求的性能,又变形小、无开裂。84、回火tempering将淬火后的钢,在一定温度加热、保温后冷却下来的一种热处理工艺。85、腐蚀corrosion金属与周围环境发生化学、电化学反应以及物理作用而引起的变质和破坏。化学腐蚀是材料或设备表面和其周围介质直接进行化学反应而使金属遭到的破坏,它们大多发生在气态环境中。在金属腐蚀破坏过程中,有电流产生的称为电化学腐蚀。86、全面腐蚀在材料或设备整个表面或一个大面积上与周围介质普遍地发生化学或电化学反应所受到的破坏。全面腐蚀虽不会明显缩短设备使用期限,但金属在大面积上受到腐蚀时,会产生腐蚀产物,当这些腐蚀产物带入锅内,沉积在管壁上,便会引起沉积物下腐蚀等的损坏。87、电偶腐蚀当两种具有不同电位的金属相互接触或通过导体连接并有电解质溶液存在的条件下而发生的腐蚀现象,又称异金属接触腐蚀。如运行中凝汽器铜合金管与铜管板胀接处的金属腐蚀。88、点腐蚀又称孔蚀,金属的某一部分被腐蚀成为一些小而深的点孔,腐蚀产物及介质在蚀点底部越浓缩,作用越厉害,蚀洞越深,有时甚至发生穿孔。89、缝隙腐蚀当构件具有缝隙或覆盖沉积物表面暴露在腐蚀介质中时,在缝隙局部范围内发生的腐蚀。如金属铆接处、螺栓连接处和金属表面沉积物下面的腐蚀。90、晶间腐蚀金属材料在某些腐蚀介质如NaOH中,晶界的溶解速度远大于晶粒本身的溶解速度时,会产生沿晶界进行的选择性局部腐蚀。91、选择性腐蚀指合金中活性较强的组分,在电化学过程中发生的选择性脱离。如黄铜脱锌、青铜脱锡等。92、应力腐蚀受腐蚀介质与机械应力协同作用时所产生的特殊破坏。这类腐蚀可能导致裂纹的产生和发展。锅炉设备等产生应力腐蚀的形式有①应力腐蚀断裂它是应力与腐蚀介质协同作用引起的金属断裂破坏。②腐蚀疲劳它是交变应力与腐蚀介质协同作用引起的材料破坏。③苛性脆化它是锅炉金属的一种特殊应力腐蚀形态,主要由于氢氧化钠溶液引起金属发生脆化。④氢脆金属材料中氢焊接和酸洗等过程中4000118588的材料塑性下降、开裂或损伤。93、磨冲蚀材料在腐蚀介质中腐蚀与磨损协同作用而引起的破坏。连续的磨损冲刷把再次形成的保护性氧化膜除掉造成再次腐蚀,形成恶性循环。94、低温烟气腐蚀low-temperaturecorrosiononthefireside锅炉在燃用高硫煤时发生在尾部低温受热面的酸酐凝结型沾污所造成的腐蚀现象。空气预热器特别是其冷端是低温烟气腐蚀最易发生的部位,常常是腐蚀与堵灰并存,影响烟气和空气的流通,不仅使阻力及排烟损失增加,锅炉效率降低,而且严重时锅炉的出力受到限制。95、高温烟气腐蚀hightemperaturecorrosiononthefireside通常发生在锅炉炉膛水冷壁和过热器受热面烟气侧金属管壁的腐蚀现象。一般发生在燃用高灰分、低挥发分煤种的固态排渣炉,在炉内热负荷过分集中和呈微正压工况下运行时,也会发生炉膛水冷壁高温烟气腐蚀现象。96、一次应力由非自限性载荷引起的应力。如受压元件的内压、外压、重力、爆炸力、地震力、风力和雪载等。长时间作用的载荷如重力、内压、外压、雪载等称为恒载荷,而短时间作用的载荷如地震力、风力、爆炸力等称为瞬时载荷。97、二次应力由自限性载荷引起的应力。如不均匀温度场,约束位移及过盈装配等载荷所引起的应力。而这些应力在约束放松后会自行消失,所以它们是自限在一个系统内。二次应力对元件的破坏较一次应力要小得多。98、峰值应力由于元件的刚度突变或内部缺陷而导致应力分布极不均匀即应力集中,对其局部出现的高应力称为峰值应力。它不会导致元件的立即破坏,而是在这种高应力的反复作用下,在该处会产生裂纹而导致疲劳破坏。99、积盐saltdeposit随蒸汽携带的各种物质,由于温度、压力变化,引起其溶解度下降而析出,沉积于热力设备蒸汽通流部分的现象。蒸汽参数不同,蒸汽携带的盐类也不同,参数越高,积盐的危害性越严重。积盐的部位主要为过热器和汽轮机叶片100、金属脆性brittlenessofmetal金属材料发生断裂时仅吸收较少机械能量的特性,其特征表现为产生没有宏观塑性变形的破坏。金属脆性常用冲击值及其变化来表征。根据金属脆性产生的条件不同,常将其分为赤热脆性、冷脆性、回火脆性、热脆性、时效脆性等几种。101、赤热脆性金属在800-900℃以上呈现的脆性,亦称红脆性。常发生在含硫较多或还原不良的钢中、在高温锻打时易开裂。其主要原因是硫以硫化铁及硫的氧化物形式存在于钢中,并形成低熔点的共晶体以网状形式分布在晶界上,当加热到800℃以上时共晶体熔化,使晶界强度减弱而脆裂。102、冷脆性金属在低温下呈现的脆性。冷脆性只产生于具有体心立方晶格如铁等的金属中,锅炉制造用的碳钢及低合金钢都有冷脆现象。为避免冷脆断裂事故,可通过冲击试验、落锤试验测定出脆性转变温度。选材时应选用脆性转变温度低于工作温度的钢材。103、回火脆性某些淬火的合金钢在一些温度区域回火后所产生的脆化现象。可分第一类和第二类回火脆性。104、热脆性某些钢材长期停留在大约400-550℃区间,在冷却至室温后其冲击值明显下降的现象。差不多所有的钢都有产生热脆性的趋势,但较易产生热脆性的钢有,低合金铬镍钢、锰钢及含铜Cu≥0.04%钢。105、时效脆性某些钢材冷加工变形后,在室温或在100-300℃下经过一定时间,冲击值下降的现象。时效脆化程度用时效敏感性表示。时效敏感性的测定方法是将预先拉伸10%的板状试样加热到250℃保温1h后空冷,测出其室温冲击值,再与原材料的冲击值做比较。106、脆性转变温度ductilebritt1etransitiontemperature温度降低时金属材料由韧性状态变化为脆性状态的温度区域,也称韧脆转变温度。在脆性转变温度区域以上.金属材料处于韧性状态,断裂形式主要为韧性断裂;在脆性转变温度区域以下,材料处于脆性状态,断裂形式主要为脆性断裂。脆性转变温度一般要通过断口形貌准则法测定表示规定以断口上纤维区与结晶区相对面积达一定比例时所对应的温度,以FATT(fractureappearancetrasitiontemperature)表示。107、金属硬度metalhardness金属相对的软硬程度。般金属硬度越高,强度就越高,耐磨性就越好,而塑性和韧性就越差。硬度值的物理意义取决于实验方法,常用的方法有压入法、动力法和划痕法三种。压入硬度表示材料抵抗塑件变形的能力,动力硬度表示材料形变力的大小,而划痕硬度表示材料抵抗磨损的能力。108、疲劳fatigue材料或构件在长期交变载荷持续作用下产生裂纹,直至失效或断裂的现象。其特点是破坏应力远低于材料在单向拉伸下的断裂应力,而且疲劳断裂时不产生明显的宏观塑性变形,易造成灾难性的事故。109、蠕变creep金属等固体材料在应力作用下,随时间的延续发生缓慢塑性变形的现象。蠕变是金属等固体材料的塑性变形现象的种。金属发生蠕变的温度与其熔点Tm有关。110、应力松弛stressrelaxation金属在高温和应力作用下,维持总变形不变,随着时间的延长,弹性变形不断转变为塑性变形,从而不断使应力减小的现象。111、弹性模量材料在弹性变形范围内的应力与相应的正应变之比,主要取决于材料构成及晶体结构。112、屈服现象对试件进行拉伸试验,当试验力不增加,而试件仍能继续变形的现象113、屈服强度表征金属材料对最初塑性变形的抗力。用拉伸试件发生屈服现象时的应力表示,又叫屈服点。114、煤coal一种含碳丰富的固体化石燃料,也是一种重要的一次能源。中国是世界上采煤、用煤最早的国家之一。据历史记裁,在1500多年前中国已开始用煤来炼铁,到13世纪初中国用煤已相当普遍;而欧洲则是在18世纪产业革命之后才比较广泛地利用煤炭资源。至今,煤已成为世界上重要的动力燃料和化工原料。煤炭目前主要是作为一次能源直接燃烧而加以利用。115、煤的化学组成组成煤中有机物质的化学元素有碳、氢、氧、氮和硫。这些元素的含量是计算燃烧所需空气量、燃烧产物和煤发热量的基本数据。它又可表征煤的燃烧反应能力。116、煤的工业分析包括对煤的水分、挥发分、固定碳和灰分的测定,有时还包括硫分和发热量等项数据的测定。(1)水分水分在煤中以两种状态存在,即以物理状态附着的游离水和以化学方式结合的结晶水。工业分析中只测定游离水,常分为全水分又称为收到基水分和空气干燥基水分又称为固有水分。2挥发分在一定条件下煤热解产物的量。3灰分指可燃物完全燃烧以及矿物质在一定温度下发生一系列分解、化合等复杂反应后剩余的残渣。4固定碳煤样除去水分、灰分和挥发分后即为固定碳。其数值为100%减去水分、灰分和挥发分后之值。5硫分煤中的硫分分为可燃硫和固定硫两类,前者包括有机硫和大部分无机硫矿物硫,后者则指矿物质硫酸根中的硫分,属不可燃硫,存在于灰渣中。6发热量单位重量的煤在完全燃烧后所释放的热量,若包含烟气中水蒸气凝结时放出的热量则称为高位发热量,反之则称为低位发热量。发热量是煤最重要的指标之一,用热量计来测定。117、元素分析测定煤中有机质的碳、氢、氧、氮和可燃硫等主要元素组分,以质量百分数表示,连同水分和灰分总和为100%。1碳含量最高,在可燃质中可占90%以上。2氢第二重要的组成元素。碳和氢是同时测定的。煤样在氧气中燃烧,生成的CO2和H2O分别用吸收剂吸收,由吸收剂增重来计算碳和氢的含量。3氮在试样中加入混合催化剂和硫酸,并加热分解,将煤中氮转化为氨,以测定氨量来计算氮的含量。4氧直接测定不仅操作复杂,且精度不高,一般由差减法计算,即100%与碳、氢、氮、可燃硫、水分和灰分值之差。5可燃硫由全硫和固定硫之差来计算,在计算氧量时,可近似用全硫来代替可燃硫。118、成分分析基准煤中的水分和灰分含量常随开采、运输、贮存及气候条件而异,其他成分的含量也将随之发生变化,为了便于生产和科研,通常采用四种成分分析基准①收到基以收到状态的煤为基准的表示方法;②空气干燥基以空气干燥状态的煤为基准的表示方法;③干燥基以无水状态的煤为基准的表示方法,④干燥无灰基以假想的干燥无灰状态的煤为基准的表示方法。119、可磨系数表征煤被粉碎的难易程度,测定的依据是破碎定律,即在研磨煤粉时所消耗的能量与新产生的表面面积成正比。目前广泛采用的主要方法有哈德葛罗夫Hardgrove法与全苏热工研究所法。120、煤粉细度煤粉是由各种尺寸不同一般在1500μm、形状不规则的颗粒所组成,其细度一般用标准筛来测定,以筛孔尺寸为xμm的筛子筛后剩余量占粉样的百分数Rx%来表示。121、灰熔点煤灰没有固定的熔化温度,仅有个熔化温度范围。以角锥法测定方法来表示三个特征温度变形温度DT,即灰锥尖开始变圆或弯曲时的温度;软化温度ST,即灰锥体弯曲到锥尖触及托板或锥体变成球形和高度不大于底长的半球时的温度;流动温度FT,即灰锥完全熔化或展开高度≤1.5mm薄层时的温度,也称为熔化温度。122、灰粘度表征灰在高温熔融状态下的流动特性。123、控制循环锅炉controlledcirculationboiler指在循环回路的下降管与上升管之间设置循环泵以辅助水循环并作强制流动的锅炉,又称辅助循环锅炉。它包括三种类型①从自然循环锅炉基础上发展起来的控制循环锅简锅炉循环倍率为2.4-2.5。②从带汽水分离器的直流锅炉基础上发展起来的低倍率循环锅炉循环倍率为1.22。③高负荷下按纯直流工况运行,低负荷下投入循环泵按低倍率循环运行的复合循环锅炉。124、循环泵circulatingpump装设在锅炉蒸发系统中,承受高温高压使工质作强制流动的种大流量、低扬程单级离心泵。泵的驱动电机与叶轮处于同一壳体内,处于高温高压水中电机的绝缘材料的保护及电机转子轴承的设计是关键技术。125、锅炉蒸发系统boilerevaporatingsystem将工质加热至产生蒸汽的受热面及其连接管路的总和。因工质在蒸发系统中流动的主推动力来源的不同,一般分为自然循环、控制循环和直流三种基本型式。126、锅筒drum水管锅炉中用以进行汽水分离和蒸汽净化,组成水循环回路并蓄存一定量水的筒形压力容器,又称汽包。主要作用为接纳省煤器来水,进行汽水分离和向循环回路供水,向过热器输送饱和蒸汽。锅筒中存有一定水量,具有一定的热量及工质的储蓄,在工况变动时可减缓汽压变化速度,当给水与负荷短时间不协调时起一定的缓冲作用。锅筒中装有内部设备,以进行汽水分离、蒸汽清洗、锅内加药、连续排污,藉以保证蒸汽品质。127、上下壁温差自然循环锅炉运行起停过程中,由于锅筒内汽和水对筒壁放热的差异,起动时上半部壁温低于下半部,停炉时则相反,一般规定上下壁温差应<50℃。现代大型锅炉在锅筒内周设置汽包夹层,使整个筒壁均与汽水混合物接触,上下壁温差大为减小。128、内外壁温差锅炉起动过程中,锅筒内工质温度不断升高,因而内壁温度高于外壁,产生热应力。通常限制锅炉的锅筒内工质升温速度为12℃/min。129、锅筒用钢steelforboilerdrum锅筒一般处于370℃左右及以下的中温及内压状态下工作,同时,还要受到热应力及水和蒸汽介质的腐蚀。在制造过程中需经过卷板、焊接、热处理等加工工序。目前德国的锰-镍-钼BHW35钢板和美国的碳-锰SA299钢板为亚临界压力锅炉常用的锅筒用钢。130、省煤器economizer利用锅炉排烟加热给水的受热部件,用来降低排烟温度,提高锅炉效率,节约燃料耗量,故称为省煤器。对于汽包锅炉,给水经省煤器提高温度后进入汽包,可减轻汽包所承受的热应力。131、水冷壁Waterwall敷设在锅炉炉膛四周由多根并联管组成的蒸发受热面。主要吸收炉膛中高温火焰及炉烟的辐射热量,保护炉墙,工质在其中作上升运动,受热蒸发。分光管及膜式水冷壁两种。132、锅炉对流受热面boilerconvectiveheatingsurface布置在锅炉对流烟道中,主要以对流换热方式接受烟气热量并传递给工质的受热部件。主要包括对流管束、防渣管束、过热器和再热器的对流部分、省煤器及空气预接器。布置在炉膛出口的半辐射式过热器后屏通常也包括在内。133、过热器superheater把饱和蒸汽加热到额定过热温度的锅炉受热面部件。当锅炉负荷或者其他工况改变时,应保证过热汽温的波动在允许范围内。过热器的合理设计与使用直接关系到锅炉运行的经济件和安全性。134、对流过热器布置在对流烟道中,以对流传热为主,一般采用蛇形管式。其传热效果主要取决于烟气温度和流速,呈现对流传热特性。对流过热器由并联的蛇形管组成,般采用顺列布置。135、半辐射过热器布置在炉膛出口处,又称后屏过热器。它既吸收烟气的对流热,又吸收炉膛和屏间气室的辐射热,具有较平稳的汽温调节特性。136、辐射过热器直接吸收炉膛火焰的辐射热,通常以壁式或大间距的前屏又称大屏、分隔屏的型式布置在炉壁上或炉膛上部。137、再热器reheater把汽轮机高压缸的排汽重新加热到定温度的锅炉受热部件。随着蒸汽压力的提高,为了减少汽轮机尾部的蒸汽湿度及进步提高机组的热经济性。按传热特性再热器可分为对流再热器和辐射再热器两种。对流再热器布置在对流烟道中,以对流传热为主。其结构与对流过热器相似,也是由许多并联连接的蛇形管所组成,一般布置在烟温稍低的区域,并采用较粗管径。其原因是①中压蒸汽换热系数较低,且再热系统阻力对汽轮机热耗影响较大,使蒸汽速度的提高受到限制,这样蒸汽对管壁的冷却能力降低,易引起管壁超温。②再热蒸汽压力低,比热小,对热偏差比较敏感。③为保证热力系统的经济性,通常规定系统总阻力不超过0.2-0.3MPa。辐射再热器布置在锅炉前面或侧面墙上,主要吸收炉膛辐射热。它与对流再热器组成辐射对流再热器系统,有利于改善再热汽温调节特性。138、喷水减温器spraytypedesuperheater将水直接喷入过热蒸汽中进行减温的装置。因喷入的水直接与蒸汽混合,故对水质要求较高。给水品质好的锅炉,可直接用给水作为减温水。再热蒸汽减温水从给水泵中间级抽取。139、燃烧系统combustionsystem为使燃料在锅炉炉膛内充分燃烧,向锅炉提供足够数量的燃料和空气、排除燃烧生成的烟气所需的设备和烟、风、煤煤粉管道及其附件的组合。燃烧系统一般由燃料制备、空气系统以及烟气净化和排除系统三部分组成。140、煤粉制备系统pulverizedcoalpreparationsystem为提高锅炉效率和经济性能,将原煤碾磨成细粉,然后送进锅炉炉膛进行悬浮燃烧的设备和有关连接管道的组合,简称制粉系统。141、原煤斗coalbunker锅炉房内贮存原煤的容器。为了保证锅炉能在最大连续蒸发量下不间断运行,锅炉房内须设置容量足够的原煤斗。原煤有效贮煤量一般按锅炉最大连续蒸发量8-12h的耗煤量设计的。142、给煤机coalfeeder按照负荷要求能准确调节磨煤机给煤量的机械设备。它布置在原煤斗与磨煤机之间,在直吹式制粉系统中,给煤量直接与锅炉负荷相适应。给煤机类型多种多样,按结构特点和工作原理分为容积式和重力式两种。143、磨煤机coalpulverizer将破碎后的原煤磨制成煤粉煤粉细度R90=5%一60%以供锅炉燃烧的机械设备。煤粉磨制过程的实质是克服固体分子间的结合力,使其表面积增大,因此需要消耗能量,通常以磨煤电耗kw.h/t表示消耗的能量。煤在磨煤机中被磨碎的方式主要有三种,即压碎、击碎和研碎,其中压碎过程消耗能量最省,研碎过程消耗能量最费。现代磨煤机除磨粉功能之外,还兼有干燥功能,利用热风在粉碎过程中对煤加热干燥,并在粉碎之后将煤粉带出磨煤机。因此干燥剂同时作为煤粉输送介质,使磨煤机实现稳定连续给料,连续干燥和研磨,连续向锅炉燃烧系统供应质量合格的煤粉。144、粗粉分离器classfier将磨煤机送出的粗粉从气粉混合物中分离出来,送回磨煤机继续磨碎的装置。分离原理有重力分离、惯性分离和离心分离,通常粗粉分离器以一种分离方式为主,兼有其它分离力式。从磨煤机出来的煤粉和干燥剂混合气流,垂直向上经进口管进入分离器外锥,由于通道截面扩大,流速降低,部分粗煤粉因重力作用被分离出来;当气流由外锥流向叶片及由叶片流向出口管时,气流转向产生惯性力,起再次分离作用。气流进入内锥通过叶片的引导产生旋转运动,粗煤粉因离心力作用被继续分离出来。运行中可通过改变叶片角度,增加或降低气流旋转强度来调节煤粉细度。145、回转式空气预热器rotaryairpreheater由烟气、空气交替地流过蓄热元件进行热交换,属于再生式换热装置。受热面多由排列紧密的金属簿板组成,回转式预热器比管式预热器体积小、重量轻、结构紧凑,并便于布置。此外,冷段便于更换,防腐问题易于处理。146、暖风器airheater提高锅炉空气预热器进口空气温度,使空气预热器出口的烟气温度与入口的空气温度的平均值大于烟气露点值,以防止产生低温烟气腐蚀的设备。低温腐蚀多发生在燃料含硫量较高的锅炉尾部。147、送风机forceddraftfan将空气输送入锅炉炉膛以满足燃料燃烧需要的风机。送风机的选择,既要满足燃烧过程所需要的空气量,又要根据燃烧系统的配置克服所应克服的阻力。通常一台锅炉配置两台送风机。单台运行时应能满足锅炉负荷70%的要求,大容量通常采用轴流式送风机。148、消声器muffler安装在气汽流通过的管道或设备的出、入口,用以降低气汽体动力性噪声的装置。149、烟囱chimney把锅炉烟气排入高空加以稀释和扩散的构筑物。烟囱主要用于改善烟气对周围环境的污染。火电厂烟囱一般为独立式。按建筑材料可分为砖烟囱、钢筋混凝土烟囱和钢烟囱三类。150、引风机induceddraftfan从锅炉尾部将烟气抽出排入烟囱的风机,又称吸风机。为减轻烟气中灰粒对风机的磨损,引风机多布置在除尘器之后。通常一台锅炉配置两台引风机,单台运行时可满足锅炉负荷70%的要求。151、燃烧设备fuelburningequipment把空气、燃料以不同方式引入燃烧空间,形成连续稳定燃烧火焰的装置。不同的燃料和燃烧方式需要不同的燃烧设备。通常燃烧设备包括炉膛和燃烧器等,是锅炉燃烧系统的中心环节。152、锅炉炉膛boilerfurnace锅炉中组织燃料燃烧的空间,也称燃烧室,是锅炉燃烧设备的重要组成都分。近代锅炉的炉膛除了要把燃料的化学能转变成燃烧产物的热能外,还承担着组织炉膛换热的任务。153、直流式煤粉燃饶器tangentialpulverizedcoalburner利用直流射流的多个组合和相互作用以燃烧煤粉的装置。是锅炉常用的一种燃烧器。它由一组圆形、矩形或两者兼有的喷口按一定次序相间布置所组成。一、二次风分别由不同喷口喷进炉膛,火焰在炉膛中心旋转上升。154、摆动式燃饶器调温〔
(压差表怎么填写)

了解更多关于:Gmp压差表校准周期,风柜压差表,表压和差压的关系,压差表送器原理,安装压差表实施方案,日压差记录表,跨膜压差用什么压力表测量,差压式流量计的开表步骤,传递窗压差表的功能,双法兰差压表公式,玻璃管压差表定做,压差表的用处,塞尔瑟斯压差表,称量罩的压差表如何设置安装,压差表在线控制,耐振压差表,dm2000压差表,压差表位号,差压表规格型号,斯贝克精密压差表连接
本文摘自:http://www.oen1718.com 转载请注明出处